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Abstract

In this thesis we derive a hydrodynamical kinetic theory to study the orientational re-

sponse of a mesoscopic system of nematic liquid crystals in the presence of an external

flow field. Various problems have been attempted in this direction. First, we under-

stand the steady-state behavior of uniaxial LCPs under an imposed elongational flow,

electric and magnetic field respectively. We show that (1) the Smoluchowski equation

can be cast into a generic form, (2) the external field is parallel to one of the eigenvec-

tors of the second moment tensor, and (3) the steady state probability density function

is of the Boltzmann type. In the next problem, we study the mono-domain dynamics

of rigid rod and platelet suspensions in a linear flow and a steady magnetic field. The

flows with a rotational component is mapped to simple shear with rate parameter

subject to a transverse magnetic field with strength parameter and the irrotational

flows are reduced into a triaxial extensional flow with two extensional rate parame-

ters. For rotational flows, various in-plane and out-of-plane stable steady attractors

emerge. For irrotational flows, the biaxial equilibria is characterized generically in

terms of an explicit Boltzmann distribution, providing a natural generalization of the

analytical results on pure nematic equilibria. Finally, we present the dynamics of a

mesoscopic system of biaxial liquid crystal polymers in the presence of a homogenous

shear flow. The Smoluchowski equation is derived in the rotating frame and solved

using a specially formulated Wigner-Galerkin approximation in selected regions of

the material parameter space and a range of accessible shear rates, to investigate the

stable mesoscopic states and robust structures.
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Chapter 1

Introduction

In the layman’s terms, liquid crystal is a low temperature phase that occur to some

anisotropic materials, where the material occurs neither as a liquid nor as a solid (or

crystalline ) phase. There are two classes of liquid crystal phases: nematic and smec-

tic. In the nematic phase, the molecules acquire orientational order but no positional

order, i.e. on average they line up with each other locally but their positions are still

random. In smectic phase however, the molecules acquire not only orientational order

but also some positional order. There are many different smectic phases depending

on the kind of positional order the molecules have. Liquid crystals are fascinating

both physically and mathematically for many different reasons:

• Their color is sensitive to small changes in temperature and external fields.

• Their partially liquid, partially solid nature gives rise to peculiar dynamics. [79].

• Liquid crystals often have intricate and beautiful defect structures [84]. In nematic

liquid crystals the defects are of topological origin. But in smectic liquid crystals,

since a metric is involved in order to describe the positional order, the defects can

also be of geometric origin. These defects occur not only in transients, but also in

ground states. This means that the variational problems describing the energetics of

these liquid crystals have minimizers that contain very intricate singular sets.

• The simultaneous presence of orientational and positional order allows the possi-

bility to explore the difference and similarity between translation and rotation. For

example it was suggested that the Janossy effect, an experimental observation, that

1
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the threshold for the optical Frederiks transition is reduced by 2 orders of magni-

tude after the addition of small percentage of dye molecules to the liquid crystal,

which can be explained as an orientational version of the translational ratchets [80],

a mechanism that is thought to be responsible for linear momentum transport in

biological polymers [83]. However, the permeation process in smectic liquid crystals

is a translational version of the angular friction between the molecules and the fluid

[84].

• Liquid crystal polymers provide a concrete example for the study of rheology of

polymeric liquids.

• In terms of applications, besides the well-known usage in display industry, liquid

crystal polymers are often used in industrial processing. Recently smectic liquid crys-

tals have found new interest in the study of biological polymers and cell membranes.

With our focus on the study of a specific class of nematic liquid crystals, we provide

an introductory discussion on the latest developments of nematic liquid crystals.

1.1. Nematic Liquid Crystals

There are several different levels of description of the nematic order. The most de-

tailed is the orientation distribution function f(n) which describes the probability

density that the molecules lie in the direction n. f can also depend on the position

x and time t. In isotropic phase, f(n) is a constant. In the nematic phase, f(n) is

peaked at some preferred direction n∗ in the uniaxial case.

Consider the simplest case of rod-like molecules of thickness b and length L. Let

B(n,m) be the interaction kernel of the two molecules with orientation n and m.

The simplest example is the excluded volume interaction in which case B(n,m) =

2L2b| sin γ| where γ is the angle between n and m. Including the entropic effect, the

free energy of a system of rod-like molecules can be expressed as

2



www.manaraa.com

F (f) = kBT

∫ ∫
S2S2

{f(n) log f(n) +
c

2
B(n,m)f(n)f(m)}dndm (1)

where S2 denotes the unit sphere, c is the total concentration of the rods, and c� 1.

Minimizing F subject to the constraint
∫

S2 fdm = 1, one finds that at large enough

c, there exists an anisotropic minimizer representing the nematic phase. This is the

Onsager theory.

There are various ways to coarse-grain this picture. The most popular approach is to

use the second moment

S =

∫
S2

n⊗ n(f(n)− 1

4π
)dn (2)

S is a symmetric traceless tensor. It vanishes at the isotropic phase. To describe the

isotropic-nematic phase transition, one can use the Landau approach and expand the

free energy as

F2(S) =
1

2
α(T )Tr(S2) +

1

3
β(T )Tr(S3) +

1

4
γ(T )Tr(S2)2 (3)

This is the Landau-de Gennes free energy [84]. The distinguished or preferred di-

rections are now the directions of the eigenvectors of S. The symmetry of the sys-

tem depends on the eigenvalues of S, denoted by λ1, λ2, λ3 which obey the relation

λ1 +λ2 +λ3 = 0. If two of the eigenvalues coincide, the system has uniaxial symmetry.

The dynamics of isotropic-nematic transition is often modeled by a gradient flow of

the free energy:
St = − δF2

δS
(4)

An interesting result of Forest [82] shows that the uniaxial systems are invariant

under the dynamics Eq.(4). For uniaxial materials, S is replaced by n, the direction

of alignment, and s, the degree of alignment. Away from the phase transition when

fluctuations in the degree of order are negligible, it is only important to keep track of

the direction of alignment, which we again denote by n. n is called the director field.

3
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The full hydrodynamics of a uniaxial nematic liquid crystal is described by the well

-known Ericksen-Leslie equations [84].

The Ericksen-Leslie equations have one important drawback: it does not allow the

existence of line defects which are commonly observed in liquid crystals. This is espe-

cially important for liquid crystal polymers where defects are abundant. To overcome

this difficulty, Ericksen put back the degree of alignment s and extended the Ericksen-

Leslie equations to incorporate this additional dynamic variable [81]. Unfortunately,

the resulting system is so complicated with so many undetermined coefficients that

there is little hope to make quantitative comparison with experimental data.

1.2. Biaxial nematic liquid crystals [122]

Liquid Crystals are playing a major role in revolutionising electro-optic display devices

which range from the simple alpha-numeric displays to the extremely sophisticated flat

panel screens used as television monitors [1]. The obvious success of displays based

on nematic crystals has ensured that analogous applications have been explored for

essentially every other liquid crystal phase. Indeed, it seems that no sooner has a new

phase been discovered than an electro-optic application has been found for it. In fact,

often before a phase has been found, applications have invariably been proposed. One

important example of this phenomenon relates to the prediction that there should be

another type of nematic liquid crystal phase: the biaxial nematic phase [102].

The majority of mesogenic molecules are rod-like as exemplified by the elegant molecules

created by assembling phenyl and ethyne groups in a linear array [2] and shown in

Figure 1.1a. Given the elongated appearance of such molecules it is natural to take

them to be cylindrically symmetric and to represent them as, for example, ellipsoids

of revolution (Figure 1.1b), with a single director, n̂, which is defined as the direction

along which the symmetry axes of the molecules tend to point. At a macroscopic

4
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level, properties of the nematic phase, such as the dielectric constant and the refrac-

tive index, have cylindrical symmetry. There are two unique principle components of

the property which for the general case of a second rank tensor are denoted by Q̃‖

and Q̃⊥. The phase is, referred to as a uniaxial nematic although the term properly

implies that the system possesses a single axis along which a plane polarised light

beam can travel without the state of polarisation being changed.

Figure 1.1. (a) Structures of linear molecules which seem to approach
the cylindrical symmetry often assumed for mesogenic molecules. (b)
Molecular organization in a uniaxial nematic phase composed of ellip-
soids of revolution.

A closer examination of the molecules forming liquid crystals shows that they deviate

from cylindrical symmetry, usually being board-like in structure (see Figure 1.1a).

The fact that the nematic phases which they form are uniaxial shows that although

there is long range orientational order of the molecular long axes this does not extend

to the molecular short axes whose orientations are uncorrelated except at short range.

Nonetheless, at some state point the symmetry of the phase should reflect that of the

constituent molecules and so a biaxial nematic should be formed. Here the term

biaxial strictly indicates that there are now two axes along which a plane polarized

5



www.manaraa.com

beam can travel without the state of polarization being altered. At the macroscopic

level the three principal components of the second rank tensor would all be different,

it is appropriate to denote them by Q̃nn, Q̃mm and Q̃ll where l̂, m̂ and n̂ define the

three directors of a biaxial nematic. These are shown in Figure 1.2a for a system

composed of board-shaped molecules. The director n̂ corresponds, by convention, to

the axis along which the molecular long axes tend to be parallel. The director l̂ is

the director along which, on average, the molecular short axes are parallel and the

director m̂ is orthogonal to l̂ and n̂.

Figure 1.2. (a) Molecular organization in a biaxial phase formed from
board-like molecules. (b) Phase diagram predicted by the molecular
field theory for a system of biaxial molecules as a function of the molec-
ular biaxiality, λ. The dashed line shows the anticipated freezing point
of the mesogen at a reduced temperature of 0.8.

A number of applications have already been envisaged for the biaxial nematic phase.

For example, it is to be expected that rotation of the minor directors might be rela-

tively rapid and possibly faster than for the director n̂. This could produce a display

with a fast response and based on in-plane switching. To explore such possibilities as

well as the other anticipated unusual properties of the biaxial nematic phase resulting

6
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from its lower symmetry it is clearly necessary to have examples of real systems which

form the phase. In Section 1.2.1 we consider how the molecular biaxiality influences

the ability to form a biaxial nematic. We shall then describe some materials claimed

to form a biaxial nematic and consider how the phase biaxiality can be identified.

In Section 1.2.2 we shall discuss how deuterium NMR spectroscopy can be used to

determine the symmetry of a nematic phase. The results of applying this powerful

technique to a number of materials will then be described. As we shall see the biaxial

nematic phase proves to be elusive and so in Section 1.2.3 we consider why this should

be and propose new design strategies by which the biaxial nematic could be created.

Some ending remarks of this discussion is given in Section 1.2.4.

1.2.1. Molecular biaxiality and phase biaxiality. To explore the relation-

ship between the biaxiality of the constituent molecules and the ability of the material

to form the biaxial nematic phase we need first to define a measure of the molecular

biaxiality. One but not the only way by which this can be achieved is within the

context of the molecular field theory first used to predict the phase behavior of the

system [102, 101, 3]. For the uniaxial nematic phase the potential of mean torque,

which describes the energy of a molecule in its anisotropic environment, is given by

Luckhurst et al [88] as

U(ω) = −Σ2
m=−2X

∗
2mC2m(ω) (5)

Here ω denotes the spherical polar angles defining the orientation of the director, n̂, in

the molecular frame and C2m(ω) is a modified spherical harmonics. This expression

describes how the energy changes with the molecular orientation with respect to

the director. The magnitude of this change is determined by the strength tensor,

X2m, which is related to the molecular anisotropy and the long range orientational

order parameters. The molecular biaxiality, λ, is defined by the ratio X22/X20 which

under certain conditions is determined solely by the molecular anisotropy. Thus, for

7
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a molecule having a cuboidal shape with length, L, width, W and breadth, B, the

molecular biaxiality (given by Ferrarini et al. [4]) is

λ = (3/2)1/2L(B −W )/L(B +W )− 2BW (6)

This expression takes certain simple limiting forms; when B = W the molecular cross-

section is square and so the molecular biaxiality vanishes and λ is zero. The opposite

extreme to this rod-like molecule occurs when L = B and it becomes disc-like; then λ

is
√

(3/2). In between these two extremes, when the molecules are in effect uniaxial,

is the most biaxial molecular shape. This occurs when L, B and W are related by

the harmonic mean

(W−1 + L−1)/2 = B−1 (7)

then λ is 1/
√

6. Although λ has been estimated here using a model based solely on

repulsive forces it is important to note that within the context of the molecular field

theory anisotropic attractive forces also contribute to the biaxiality parameter [88].

The phase behaviour predicted by the molecular field theory as the molecular biaxial-

ity is changed is shown in Figure 1.2b. As expected, when λ is zero the system forms

only a uniaxial nematic phase which is denoted by NU . As λ deviates from zero so

a biaxial nematic phase is necessarily introduced into the phase diagram. With in-

creasing λ the uniaxial nematic-isotropic transition temperature, TNU I , increases but

not as rapidly as that between the biaxial and uniaxial nematic phases, TNBNU . As a

result the two lines meet at a unique point, the Landau point; here the isotropic phase

undergoes a transition directly to the biaxial nematic phase. This occurs when λ is

1/
√

6, that is, the breadth of the cuboidal molecule is the harmonic mean of the width

and length. As λ increases beyond this point so the molecule becomes more uniaxial,

in consequence TNBNU falls until when λ is
√

(3/2) only a uniaxial nematic phase is

formed by the system of disc-like molecules. The theory also predicts the order of

the transitions which can be of importance in identifying the biaxial nematic-uniaxial

8
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nematic phase transition [102, 101, 3]. Thus, the uniaxial nematic-isotropic transi-

tion is first-order but as λ increases so the entropy change decreases until it vanishes

at the Landau point; that is the biaxial nematic-isotropic transition is predicted to

be second-order. In contrast to the uniaxial nematic-isotropic transition the biaxial

nematic-uniaxial nematic transition is predicted to be second order irrespective of the

magnitude of the molecular biaxiality.

It would appear, therefore, on the basis of molecular field calculations by Freiser [102]

and others [101, 3] that any compound composed of biaxial molecules should exhibit

a biaxial nematic and that the greater the molecular biaxiality the greater the chance

of observing this phase. However, it was not until 16 years after the original prediction

that the first claim to have discovered a thermotropic biaxial nematic phase appeared

[5]. There then followed, relatively quickly, claims to have found other examples of

materials forming a biaxial nematic [6, 7]. A selection of the systems is shown in

Figure 1.3 and these structures clearly indicate that the constituent molecules have a

high shape biaxiality. It was not surprising, therefore, that they should form a biaxial

nematic phase. However, it is important that this phase is correctly identified and in

the following section we consider how this might be achieved.

1.2.2. Identifying a biaxial nematic. The defining characteristic of a biaxial

nematic phase is the fact that the three principal components of any second tensorial

property are different. The refractive index is related to such a property and since

small differences in the refractive index can be readily measured this presents a prime

quantity, in principle, with which to establish the symmetry of a nematic phase. In

this determination it is essential to prepare a monodomain of the nematic. This can

achieved by placing a thin film of the nematic between two electrodes and using an

electric field to align the n̂ director. Surface forces are then employed to align the

m̂ director for a biaxial nematic phase. The difference in the indices along l̂ and m̂

can then be determined using conoscopy [8]. These images obtained for uniaxial and
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Figure 1.3. Molecular structures claimed to form a biaxial nematic phase.

biaxial phases are shown in Figure 1.4a. For a uniaxial nematic there is an interference

pattern giving the two dark lines, known as isogyres, which form a cross; however, if

the phase is biaxial the isogyres open and so do not cross in the centre of the image.
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Figure 1.4. (a) Conoscopic images expected for monodomain samples
of a uniaxial and a biaxial phase.(b) Dependence of the NMR spectrum
of a group of equivalent deuterons in a uniaxial phase on the angle, β,
between the director, n̂, and the magnetic field.

This technique has been used to demonstrate that the nematic phases formed by com-

pounds (II) [6] and (III) [9] in Figure 1.3 are biaxial. However , the extent to which

the isogyres are observed to open is rather small which implies that the biaxiality in

the refractive index is also small. This presents a problem for the definitive identifi-

cation of the nematic phase as biaxial since for thin films the surface can induce an

optical biaxiality in the sample even if the bulk phase is uniaxial. This is because the

director, n̂, may be tilted with respect to the surface normal. It would seem, there-

fore, that an alternative method, free from influence of surface forces on the director

orientation, is needed to establish the symmetry of the nematic phase. Deuterium

NMR spectroscopy provides such a method and we now outline the essential features

of this technique.

In the isotropic phase the NMR spectrum of a sample containing a set of equivalent

deuterons contains a single line. However, on entering the liquid crystal phase this is

split into a doublet because of the long range orientational order characteristic of the
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liquid crystal and the quadrupolar interaction for the deuterons [10]. The magnitude

of the splitting depends both on the second rank orientational order parameters for

the molecule and the orientation of the director with respect to the magnetic field

of the spectrometer. It is this second aspect which is of particular importance here.

The variation of the spectrum with the angle, β, between the magnetic field and the

director, n̂, of a uniaxial nematic is indicated in Figure 1.4b. This shows that the

largest quadrupolar splitting occurs when the director is parallel to the field. As the

angle between the field and the director increases so the splitting decreases, passes

through zero at the magic angle (54.74o) and then increases again to one-half of its

original value. The angular variation of the quadrupolar splitting, 4ν̃, is accurately

represented by

4ν̃(β) = 4ν̃(0)(3 cos2 β − 1)/2 (8)

Strictly the signs of the quadrupolar splittings when the director is parallel and per-

pendicular to the magnetic field are opposite, as is apparent from Eq.(8). However,

the signs of the splittings cannot be determined from the NMR spectrum and so it

is the modulus of the ratio with which we shall be concerned. The important point

for the phase symmetry is that for a uniaxial nematic, the modulus of the ratio of

the quadrupolar splittings when the field is parallel to the director to that when it is

perpendicular is 2:1. In contrast, if the nematic phase is biaxial then the ratio of the

splittings when the magnetic field is along n̂ to that when it is parallel to l̂ or m̂ devi-

ates from 2:1. In principle, therefore, it would be necessary to prepare a monodomain

sample of the nematic and then change its orientation with respect to the magnetic

field to establish the phase symmetry. In practise this can be difficult because one of

the directors will always be aligned with the magnetic field of the spectrometer and

so a competing electric field would be necessary to change its orientation.
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Fortunately, there is an alternative procedure with which to control the director align-

ment which allows two of the principal components of the quadrupolar splitting to

be measured from a single spectrum. To achieve this it is necessary to spin the sam-

ple about an axis orthogonal to the magnetic field. Then, provided the diamagnetic

anisotropy is positive and the spinning speed is above some critical value, the director

is observed to be randomly distributed in a plane perpendicular to the spinning axis

[11]. Since the field is in this plane the director will adopt all angles with respect to

the magnetic field from 0o to 90o. In addition, the NMR spectrum of the system is a

sum of spectra coming from each orientation of the director; this is known as a two-

dimensional powder pattern. It will then contain spectra from the extreme director

orientations from which the associated quadrupolar splittings and hence the phase

symmetry can be determined. Simulated spectra illustrating the behavior expected

for uniaxial and biaxial nematic phases are shown in Figure 1.5. The static samples

with the n̂ director aligned parallel to the magnetic field give spectra containing a

simple quadrupolar doublet. On spinning the samples above some critical speed the

spectra change; in both cases they contain an outer pair of lines associated with the

n̂ director parallel to the magnetic field in other words with a quadrupolar splitting

equal to that found for the static sample. In addition, there is an inner quadrupo-

lar doublet associated with the n̂ director orthogonal to the magnetic field. For the

uniaxial nematic the outer quadrupolar splitting is just twice the inner one. For the

biaxial nematic the ratio of the outer and inner quadrupolar splitting deviates from

the value of 2:1; in Figure 1.5 the ratio is larger although it could equally well be

smaller [12].

The first thermotropic nematogen for which the NMR technique was used to establish

the symmetry of the nematic phase was 2,3,4-trihexyloxycinnamic acid (see III in

Figure 1.3 [12]. The nematic phase of this material, formed directly from the isotropic

phase, had been identified as biaxial using conoscopic observations [9]. To investigate
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Figure 1.5. Simulated deuterium NMR spectra for the uniaxial and
biaxial nematic samples for (a) static and (b) spun about an axis per-
pendicular to the magnetic field of the spectrometer.

the symmetry of this phase using deuterium NMR the compound was specifically

deuteriated in one position of the ethylenic bond. The NMR spectrum recorded in

the nematic phase is shown in Figure 1.6a. As expected, the spectrum of the static

sample contains a single quadrupolar doublet associated with the director parallel to

the magnetic field. On spinning the sample about an axis orthogonal to the magnetic

field a two-dimensional powder pattern is formed at the relatively low rotational

velocity of 2.7 Hz. This low value implies that the rotational viscosity of the nematic

is rather large [12]. As predicted (see Figure 1.5) the outer doublet has the same

quadrupolar splitting as for the static sample showing that it comes from the director

aligned parallel to the magnetic field. The inner doublet has a splitting which is

essentially one-half of the major splitting. This suggests that the nematic phase is

uniaxial and that this splitting comes from the director being orthogonal to the field.

Confirmation of the uniaxial symmetry of the phase is obtained by simulating the

NMR spectrum and this simulation is shown as the dashed line in Figure 1.6a; it is
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clearly in good agreement with the experimental spectrum. The conclusion that the

nematic phase formed by 2,3,4-trihexyloxycinnamic acid is uniaxial and not biaxial

as originally claimed is consistent with the observation that there is a large jump in

the quadrupolar splitting at the nematic-isotropic transition. This shows that the

transition is a first-order and not second-order as predicted for a biaxial nematic-

isotropic transition.

Figure 1.6. (a) Deuterium NMR spectrum of mono-deuteriated 2,3,4-
tri-hexyloxycinnamic acid (III) in its nematic phase: static and spin-
ning. The simulated spectrum for the spinning sample, assuming a
uniaxial nematic phase, is shown as the dashed line. (b) Deuterium
NMR spectra of the solute, hexamethylbenzene-d18, dissolved in the
nematic phase of the mesogen I for the static and the spinning sample.
The two-dimensional powder pattern simulated for a uniaxial nematic
phase is shown as the dashed line.

The NMR technique was next used to investigate the symmetry of the nematic phase

formed by 4-[3,4,5-tris(4-dodecyloxybenzyloxy)benzoyloxy]-4’-(4-dodecyloxybenzoyloxy)-

1’,1’-biphenyl (see I in Figure 1.3) which was the first compound claimed to form a

biaxial nematic [5] having been identified by its optical texture [8]. To confirm this

assignment using NMR spectroscopy the compound was also specifically deuteriated,
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now in the three oxymethylene links. This gives a material with two groups of equiv-

alent deuterons that were apparent from the deuterium NMR spectrum of the static

nematic phase which exihibited two quadrupolar doublets [13]. On spinning the sam-

ple about an axis orthogonal to the magnetic field, again at a relatively low rotational

velocity, a two-dimensional powder pattern was observed. This was somewhat more

complicated than those shown in Figure 1.5 and Figure 1.6a because there are two

quadrupolar doublets, however, simulation of the spectrum [13] revealed that the

symmetry of the nematic phase was uniaxial and not biaxial as originally claimed [5].

The specific introduction into a mesogenic molecule can be a difficult and time con-

suming task. The alternative process of simply adding a deuteriated solute to the

mesogenic solvent offers an extremely convenient alternative. The essential point

being that the symmetry of the environment experienced by the solute molecules is

identical to that experienced by the mesogenic molecules. Offcourse, the addition

of a solute may change the phase behavior by changing the transition temperature

and possibly the nature of the phase. Such undesirable effects can be minimised by

using a low solute concentration which with modern NMR spectrometers is of the

order of a few wt.%. This technique for the introduction of deuterium into a meso-

genic sample was also used for mesogen I [13]. The solute chosen was predeuteriated

hexamethylbenzene−d18 for which the 18 deuterons are equivalent. The deuterium

NMR spectrum for this solute dissolved in the nematic phase of I therefore contains

a single quadrupolar doublet as shown in Figure 1.6b. On spinning the sample a

two-dimensional powder pattern was observed and this is apparent from the spec-

trum shown in Figure 1.6b. The spacing between the outer pair of lines is essentially

twice that for the inner pair. This also suggests that the nematic phase is uniaxial,

a result confirmed by the spectrum simulated for a uniaxial nematic which is in very

good agreement with the experimental powder pattern (see Figure 1.6b). The result

obtained with the solute is, therefore, in complete agreement with that found for
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the specifically deuteriated mesogen. This is a valuable conclusion since it suggests

that the symmetry of nematic phases can be determined without needing to prepare

deuteriated mesogens.

More recently, Chandrasekhar and his colleagues [14, 15] have presented apparently

convincing evidence that 4,4”(p-terphenyl)-bis[2,3,4-tri(dodecyloxy) benzal]imine (see

IV in Figure 1.3) forms a biaxial nematic phase. This evidence included differential

scanning calorimetry, optical textures, conoscopy and optical transmittance [15]; all

of these observations are consistent with the phase being a biaxial nematic. This

appeared, therefore, to be an ideal material with which to demonstrate the NMR

methodology. Since a deuteriated sample was not available, deuterium was introduced

by the addition of the solute hexamethylbenzene−d18. The NMR spectrum of this in

the nematic phase, previously identified as biaxial, is shown in Figure 1.7a. As ex-

pected the spectrum of the static sample consists of a single quadrupolar doublet and

on spinning about an axis orthogonal to the magnetic field a familiar two-dimensional

powder pattern was observed was observed [16]. The spacing between the outer and

inner pairs of lines is in the ratio of approximately 2:1 and the simulated powder pat-

tern is found to be in very good agreement with experiment. It would seem, therefore,

that the phase previously identified by Chandrasekhar and his colleagues as a biaxial

nematic is, according to the NMR experiment, uniaxial.

This apparent failure of deuterium NMR spectroscopy to observe the biaxiality of

nematic phases when other techniques are apparently able to do is somewhat surpris-

ing. It could result, for example, from some flaw in the NMR method whereby the

biaxiality in the quadrupolar tensor, q̃, is somewhat averaged to zero. Alternatively, it

could be that the biaxiality in q̃ and hence of the phase is too small to be determined

with the NMR technique.
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Figure 1.7. (a) Deuterium NMR spectra of the solute,
hexamethylbenzene-d18, dissolved in the nematic phase of IV for
the static and the spinning sample. (b) Deuterium NMR spectrum of
D2O in the biaxial nematic phase formed by the lyotropic mesogen
composed of potassium laurate, decylammonium hydrochloride and
water: (i) static; (ii) spinning; and (iii) simulated two-dimensional
powder pattern with η̃ = 0.68.

The validity of the method itself to observe the symmetry of a biaxial nematic phase

has in fact been demonstrated for such phases formed by lyotropic mesogens. Indeed

the first biaxial nematic phase to have been reported was for a lyotropic system

composed of potassium laurate, 1-decanol and water [17] although some doubt has

been cast on the chemical stability of the phase in this particular system [18]. This

chemical instability of the biaxial nematic phase is reduced if the decanol is replaced

by decylammonium hydrochloride [19]. Such a system has been studied by deuterium

NMR spectroscopy and for this the source of deuterium was obtained by replacing
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light (H2O) with heavy (D2O) water [20]. The range of the biaxial nematic is now

determined not only by temperature but also by the concentrations of the various

components in the lyotropic mesogens. The deuterium NMR spectra for one such

system in its biaxial nematic phase is shown in Figure 1.7b. The spectrum of the

static sample contains a single quadrupolar doublet as expected when one of the

directors is aligned parallel to the magnetic field. On spinning the sample about an

axis orthogonal to the magnetic field with a rotational velocity of approximately 2 Hz a

two-dimensional powder pattern was observed. However, unlike the powder patterns

obtained for thermotropic mesogens the spacing between the inner pair offlines is

clearly not equal to half that between the outer pair. It is clear, therefore, that the

NMR spectrum of a spinning nematic can be used to determine the symmetry of a

biaxial nematic phase. Consequently, the failure of the NMR technique to observe

the biaxiality in the nematic phase formed by thermotropic mesogens is unlikely to

be associated with some flaw in the methodology.

The other possible explanation suggested is that the biaxiality of the nematic phase

is too small to be observed by NMR spectroscopy. It is, perhaps, helpful at this stage

to see how the biaxiality parameter obtained from the NMR experiments is defined.

At a formal level the quadrupolar splittings determined from the NMR spectrum

are related to the partially-averaged quadrupolar tensor, q̃. The principal axes for q̃

are simply the symmetry axes of the phase, that is, the three directors and so the

principal components are denoted by q̃ll, q̃mm and q̃nn; two subscripts are used because

q̃ is a second rank tensor tensor. The quadrupolar splittings when the magnetic field

is aligned parallel to a director is just three halves times the principal components of

q̃ for that direction .

Determination of the splittings associated with the field parallel to the directors then

gives q̃ and its biaxiality which reflects that of the phase [12, 13] and is defined by
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η̃ = (q̃mm − q̃ll)/q̃nn, (9)

where the labels n, l and m are assigned such that |q̃nn| > |q̃mm| > |q̃ll|. With this

assignment, η̃ vanishes for the uniaxial nematic while for the biaxial nematic it can

take limiting values of ±1 depending on the signs of the principal components. These

limiting values obtain because q̃ is traceless, that is, the sum of the diagonal elements

vanishes. The form of the NMR spectrum given in Figure 1.7b shows that for the

spinning sample one director is aligned parallel to the spinning axis and the other two

are distributed in the plane orthogonal to this. The principal components of q̃ are

then readily obtained from the spectrum and give a value for the biaxiality parameter

of 0.68; the spectrum simulated with η̃ = 0.68 is in good agreement with experiment

[20] as can be seen from Figure 1.7b. This biaxiality is clearly large although at other

temperature the biaxiality parameter is even larger and is found to reach its limiting

value of unity [20]. These biaxiality parameters are clearly significant but they are in

keeping with molecular field theory predictions for thermotropic biaxial nematics [4].

Detailed analysis of the NMR spectra for the supposed thermotropic biaxial nematic

phases reveals that the biaxiality parameter, η̃, is certainly less than 0.1 [12, 13, 16]

which is significantly smaller than the value expected for a biaxial nematic. It would

seem, therefore, that the assignment of the nematic phases claimed to be biaxial as

uniaxial nematics is correct and so in the following section we consider why it is so

difficult to prepare a compound exhibiting a biaxial nematic phase.

1.2.3. Designing biaxial nematogens. To understand the inherent difficulty

in designing materials to form a biaxial nematic phase it is useful to return to the

predicted phase diagram shown in Fig. Figure 1.2b. Here we see that as soon as the

constituent molecules deviate from cylindrical symmetry the mesogen should exihibit

a biaxial nematic phase following the uniaxial nematic. However, in practise the

uniaxial nematic does not usually form a biaxial nematic because another phase
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intervenes. That is, the uniaxial nematic may simply crystalize or undergo a transition

to a smectic phase. To see how this will influence the value of the molecular biaxiality

parameter needed to give an enantiotropic biaxial nematic it is necessary to make an

assumption about the nematic range. Typically real nematogens freeze at a reduced

temperature, T/TNI , of approximately 0.9 and certainly by a reduced temperature

of 0.8. For a nematogen with a nematic-isotropic transition temperature of 400 K

this would correspond to a nematic range of 80 K which is relatively long for a real

nematogen. The dashed line in Figure 1.2b shows this hypothetical nematic range and

it is seen that for the vast majority of the molecular biaxialities the uniaxial nematic

phase is expected to freeze before the transition to the biaxial nematic can occur.

Indeed the range of molecular biaxialities for which an enantiotropic biaxial nematic

is predicted is extremely small, from approximately 0.39 to 0.42. Thus, for a material

to form the biaxial nematic phase the biaxiality of the constituent molecules must be

within a few percent of the maximum allowed biaxiality of 1/
√

6(≡ 0.4082) [4]. It is

not surprising, therefore, that the biaxial nemtic phase is proving to be elusive when

the molecular biaxiality has to be to tightly defined. Offcourse, if the system can be

prevented from freezing, as in lattice models where the orientational and translational

order are decoupled, then it should certainly be possible for molecules interacting via

a biaxial potential to form a biaxial nematic. This has been found to be the case for

the biaxial analogue [21] of the seminal Lebwohl-Lasher model of uniaxial nematics

[22].

We have, implicitly, been taking the biaxial molecules to be cuboidal but other molec-

ular shapes also deviate from cylindrical symmetry. For example, V-shaped or banana

molecules such as that in Figure 1.8 are also biaxial although many of these form new

smectic phases with quite fascinating properties [?, 4]. Since the V-shaped molecule

can be thought of as containing two cylindrically symmetric arms the extent of its

biaxiality is determined simply by the angle between these two arms. The influence of
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Figure 1.8. Phase behaviour predicted by molecular field theory for
a V-shaped molecule, as a function of the angle θ between the two
mesogenic arms. The dashed line indicates the freezing point which is
taken to occur at a reduced temperature of 0.8.

this geometrical parameter on the phase behaviour is readily calculated using molec-

ular field theory and the result is shown in Figure 1.7b [24]. When θ is 180o the

molecule is linear and so only a uniaxial nematic phase can be formed; similarly when

the angle between the two arms is 90o only a uniaxial nematic phase is possible when

the molecule is essentially disc-like. In between these two limiting cases the uniaxial

nematic-isotropic transition temperature falls as the molecule is bent. More impor-

tantly a biaxial nematic phase necessarily appears in the phase diagram and TNBNU

increases, albeit rather slowly. Eventually the lines for TNBNU and TNU I cross at the

Landau point when there is a second-order transition directly from the isotropic to

the biaxial nematic phase. The value of θ at the Landau point which is associated

with the maximal molecular biaxiality is the tetrahedral angle of cos−1(1/3), that

is, 109.47o. The appearance of this phase diagram has much in common with that

obtained for hard V-shaped objects using a theoretical approach based on a second

virial and bifurcation analysis [25]. The state variable for such a system is the density
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which is related to the inverse temperature for thermotropic models. We see, there-

fore, that the conventional banana molecules where the angle between the mesogenic

arms is close to 120o are somewhat removed from the optimum tetrahedral value. To

determine whether it is too far removed to yield an enantiotropic biaxial nematic it

is necessary to include on the phase diagram the anticipated freezing point of the

material. Again this is taken to occur at a reduced temperature of 0.8 and the line

corresponding to this is shown as the dashed line in Figure 1.8. It is now apparent

that the uniaxial nematic phase will freeze before the biaxial nematic phase is formed

except for a very narrow range of angles θ, varying from 108.5o to 110o. It would

appear that the conventional banana molecules will certainly not exhibit a biaxial

nematic phase although one in which the two arms are linked by a methylene group

should form this elusive phase. However, there is another problem with this strategy

which is also apparent from the phase diagram in Figure 1.8. This is the dramatic

reduction in the uniaxial nematic-isotropic transition temperature as the inter-arm

angle decreases from 180o; indeed by the time it has reached the tetrahedral angle

TNI has decreased to less than one-third of its original value. It seems, therefore,

that the transition temperature of the linear mesogen, that is without the central

carbon atom, should be above 900 K if TNI for the V-shaped form is to be in excess

of room temperature. This would require mesogenic arms with atleast three phenyl

rings; however, such molecules do not exhibit a liquid crystal phase presumably be-

cause of their high melting points [24]. This high melting point can be reduced and

the smectic forming tendency of the V-shaped molecules removed by placing a bulky

substituent in the linking phenyl ring. The use of a hexyl chain is found to create a

series of materials exhibiting monotropic nematic phases although the symmetry of

these has yet to be determined [26].

If, as seems apparent from this discussion, the design of mesogenic molecules with

sufficient biaxiality to form a biaxial nematic is such a delicate task then the use of
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mixtures might prove to be more successful. This view is suggested by the observation

that the stable arrangement for a rod-like and a disc-like molecule is one with their

symmetry axes orthogonal to each other. This would result in the two directors asso-

ciated with these two symmetry axes being orthogonal to each other in the nematic

phase. Indeed this strategy for the formation of a biaxial nematic was apparently

supported by a molecular field theory [27]. This showed that a binary mixture of

rods and discs should form both uniaxial and biaxial nematic phases except for the

equimolar mixture for which the isotropic phase should undergo a transition directly

to the biaxial nematic. However, this theory ignored the possibility that the system

might phase separate into two uniaxial nematic phases, one rich in rods and the other

in discs. In fact this proves to be the stable state of the binary mixture of rods and

discs, in preference to a biaxial nematic phase [28].

Figure 1.9. Molecular structure of a rod-disc dimer with high biaxiality.

The observation of this phase for such a mixture requires a method for inhibiting

phase separation. This is readily achieved in computer simulation studies of lattice

models where the rods and discs are randomly distributed and fixed on lattice sites.

Such an idealized model with equal numbers of rods and discs is found to form a

biaxial nematic phase although if exchange between lattice sites is allowed two uni-

axial nematics are formed [29]. This strategy is clearly not possible for real mesogens

and here it has been suggested that phase separation can be inhibited if the scalar
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interaction between a rod and a disc is more favorable than the mean interaction

between like particles [30]. Although attempts have been made to implement this

theory led strategy at a practical level no biaxial nematics have yet been reported,

possibly because the scalar rod-disc interactions are insufficiently strong. However,

a limiting case which would certainly prevent phase separation would be to connect

the rod-like and disc-like molecules covalently. It has been suggested by Fletcher and

Luckhurst [49] that this can be achieved by using a flexible spacer to link the rod-

like and disc-like moieties, an idea also explored by Praefcke and his colleagues [50].

However, it is necessary for the spacer with its different conformations to hold the

effective symmetry axes of the two mesogenic moieties essentially perpendicular to

each other so that their preferred alignment results in orthogonal directors. This

approach has been attempted using a homologous series of α−[(1,2,3,5,6- pentakis(4-

pentylphenyl-ethynyl))-benzene-4-oxy]-ω-(4’-cyanobiphenyl)alkanes whose structure

is shown in Figure 1.9. None of these materials gave a nematic phase although

equimolar mixtures with 2,4,7-trinitro-9-fluorenone did yield monotropic nematics

with small translational entropies [49] which is suggestive of a high molecular biax-

iality. However, the monotropic nature of the nematic phase made it impossible to

determine its symmetry using NMR spectroscopy. Nonetheless, this type of rod-disc

dimer offers a wide range of opportunities both to stabilize the nematic phase and to

enhance the molecular biaxiality, as we have discovered [51].

1.2.4. Ending Remarks. It is apparent that deuterium NMR spectroscopy pro-

vides a powerful technique with which to determine the symmetry of nematic phases

especially as the system investigated is essentially free from surface perturbations.

Application of this technique to several compounds for which thermotropic biaxial

nematic phases have been claimed has shown them to be uniaxial nematics. This

result is, at first sight, somewhat surprising because the constituent molecules cer-

tainly appear to have a high biaxiality and so might be expected to form a biaxial

nematic. However, molecular field calculations predict that if a biaxial nematic is to
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appear above the freezing point of a real uniaxial nematic then the molecular biaxi-

ality must be within a few percent of its maximal value. It seems unlikely that such

tightly constrained values can be easily achieved with real mesogenic molecules. An

alternative route to molecule biaxiality is to bend a linear molecule thus giving a V-

or banana-shaped molecule. Although this strategy seems attractive molecular field

theory predicts that only a bond angle within a few degrees of the tetrahedral angle

will allow the biaxial nematic to appear above the freezing point of a real uniaxial

nematic. A quite different approach is based on the idea that mixtures of rods and

discs should form a biaxial nematic were it not for the separation of the mixture into

two uniaxial nematics. This phase separation can be prevented by linking the two

mesogenic moieties to give a non-symmetric liquid crystal dimer. Such dimers provide

a rich variety of molecular structures and prelimnary studies are supportive of this

concept . At present, then, thermotropic biaxial nematics would appear to be fiction

but there is every expectation that they will become fact in the near future.

1.3. Thesis organization

This chapter mentions some of the ongoing debates and unsolved problems in the area

of Nematic Liquid Crystal Polymers. The introduction merely highlights a rich variety

of problems, that seem to have little to do with each other. In this dissertation, we

have specifically focused on one major problem in nematic lcps, namely the dynamics

and rheology of flows of biaxial liquid crystal polymers, using the kinetic theory [85].

The thesis is organized as follows. Chapter 2 provides all the necessary tools and

theorems needed to understand our work. The complete derivation of the rotational

diffusion equation is then given in Chapter 3. Finally the results of the rheology and

flows of biaxial lcps are presented in chapter 6. The three appendices towards the

end, supplement our work.
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Chapter 2

Mathematical Background

This Chapter provides the mathematical and the physical foundation which is nec-

essary to understand this thesis on liquid crystals. Readers familiar with tensor

notations are requested to skip the next section.

This chapter is organized as follows. Section 2.1 provides a detailed description of

the tensor calculus needed to understand the various mathematical notations in sub-

sequent chapters. While sections 2.2 and 2.3 gives all the quantum mechanical back-

ground needed to derive the rotational diffusion equation (described in the next chap-

ter). Section 2.4 discusses how to construct the “order parameters” of interest for

biaxial lcps. Finally, in section 2.5, we show an example of first order phase transi-

tion and explain the concept of tricritical point, which is necessary to understand our

results (in chapter 6).

2.1. Tensors calculus

A scalar field describes a one-to-one correspondence between a single scalar number

and a point. An n-dimensional vector field is described by a one-to-one correspondence

between n-numbers and a point. Let us generalize these concepts by assigning n-

squared numbers to a single point or n-cubed numbers to a single point. When these

numbers obey certain transformation laws they become examples of tensor fields. In

general, scalar fields are referred to as tensor fields of rank or order zero whereas

vector fields are tensors of rank or order one. Closely associated with tensor calculus

is the index notation.
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2.1.1. Index Notation. A vector
−→
A can be expressed in the component form

−→
A = A1ê1 + A2ê2 + A3ê3

(where ê1, ê2 and ê3 are orthogonal unit basis vectors), or as number triples:
−→
A =

(A1, A2, A3) or in the indicial notation, i.e.

Ai, i = 1, 2, 3

The indicial notion focuses attention only on the components of the vectors and

employs a dummy subscript whose range over the integers is specified. The symbol

Ai refers to all of the components of the vector
−→
A simultaneously. The dummy

subscript i can have any of the integer values 1,2 or 3. For i = 1 we focus attention

on the A1 component of the vector
−→
A . Setting i = 2 focuses attention on the second

component A2 component of the vector
−→
A and similarly when i = 3 we can focus

attention on the third component of
−→
A . The subscript i is a dummy subscript and

may be replaced by another letter, say p, so long as one specifies the integer values

that this dummy subscript can have .

Higher dimensional vectors may be defined as ordered n-tuples. For example, the

vector

−→
X = (X1, X2, ..., XN)

with componentsXi , i = 1, 2, ..., N is called a N-dimensional vector. Another notation

used to represent this vector is

−→
X = X1ê1 +X2ê2 + ...+XN êN

where (ê1, ê2, ..., êN) are linearly independent unit base vectors. Note that many of

the operations that occur in the use of the index notation apply not only for three

dimensional vectors, but also for N-dimensional vectors.

In future sections it is necessary to define quantities which can be represented by

a letter with subscripts. Such quantities are referred to as systems. When these
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quantities obey transformation laws they are referred to as tensor systems. Examples

are;

Aijk eijk δij Ai Bj

The number of subscripts determines the order of the system. A system with one

index is a first order system. A system with N indices is called a Nth order system. A

system with no indices is called a scalar or zeroth order system. The type of system

depends upon the number of subscripts occurring in an expression. For example, Ajk

and Bst, (all indices range 1 to N), are of the same type because they have the same

number of subscripts.

There is a range convention associated with the indices. This convention states that

whenever there is an expression where the indices occur unrepeated it is to be un-

derstood that each of the subscripts can take on any of the integer values 1,2,...N

where N is a specified integer. For example the Kronecker delta symbol δij, defined

by δij = 1 if i = j and δij = 0 if i 6= j, with i,j ranging over the values 1,2,3 represents

the 9 quantities

δ11 = 1 δ12 = 0 δ13 = 0

δ21 = 0 δ22 = 1 δ23 = 0

δ31 = 0 δ32 = 0 δ33 = 1

The symbol δij refers to all the components of the system simultaneously. As another

example, consider the equation:

êm · ên = δmn m,n = 1, 2, 3 (10)

the subscripts m,n occur unrepeated on the left side of the equation and hence must

also occur on the right hand side of the equation. These indices are called ”free”

indices and can take on any of the values 1,2 or 3 as specified by the range. Since

there are three choices for the value of m and three choices for a value of n we find

that Eq.(10) represents nine equations simultaneously.
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2.1.1.1. Symmetric and Skew-Symmetric System. A system defined by subscripts

ranging over a set of values is said to be symmetric in two of its indices if the compo-

nents are unchanged when the indices are interchanged. For example, the third order

system Tijk is symmetric in the indices i and k if

Tijk = Tkji for values of i,j,k

A system defined by subscripts is said to be skew-symmetric in two of its indices if the

components change sign when the indices are interchanged. For example, the fourth

order system Tijkl is skew-symmetric in indices i and l if

Tijkl = −Tljki for values of i,j,k and l

As another example, consider the third order system aprs, p, r, s = 1, 2, 3 which is

completely skew-symmetric in all of its indices. We would then have

aprs = −apsr = aspr = −asrp = arsp = −arps

This completely skew-symmetric system has 27 elements, 21 of which are zero. The

6 nonzero elements are all related to one another through the above equations when

(p,r,s) = (1,2,3). This is expressed as saying that the above system has only one

independent component.

2.1.2. Summation Convention. The summation convention states that when-

ever there arises an expression where there is an index which occurs twice on the

same side of any equation, or term within an equation, it is understood to represent

a summation on these repeated indices. The summation being over the integer values

specified by the range. A repeated index is called a summation index, while an unre-

peated index is called a free index. The summation convention requires that one must

never allow a summation index to appear more than twice in any expression. Because

of this rule it is sometimes necessary to replace one dummy summation symbol by

some other dummy symbol in order to avoid having three or more indices occuring

on the same side of the equation.
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Example 1:

The two equations

y1 = a11x1 + a12x2

y2 = a21x1 + a22x2

can be represented as one equation by introducing a dummy index, say k, and ex-

pressing the above equations as

yk = ak1x1 + ak2x2, k=1,2

The range convention states that k is free to have any one of the values 1 or 2, (k is

a free index). This equation can now be written in the form

yk =
∑2

i=1 akixi = ak1x1 + ak2x2

where i is the dummy summation index. When the summation sign is removed and

the summation convention is adopted we have

yk = akixi i,k = 1,2

Since the subscript i repeats itself, the summation convention requires that a summa-

tion be performed by letting the subscript take on the values specified by the range

and then summing the results. The index k which appears only once on the left and

only once on the right hand side of the equation is called free index. It should be

noted that both k and i are dummy subscripts and can be replaced by other letters.

Example 2:

The two product of two vectors Aq, q = 1,2,3 and Bj, j = 1,2,3 can be represented with

the index notation by the product AiBi = AB cos θ i = 1,2,3, A = |
−→
A |, B = |

−→
B |.

Since the subscript i is repeated it is understood to represent a summation index.

Summing on i over the range specified, there results

A1B1 + A2B2 + A3B3 = AB cos θ
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2.1.3. Addition, Multiplication and Contraction.

Addition:

The algebraic operation of addition or substraction applies to systems of the same

type and order . That is we can add or subtract like components in systems. For

example, the sum of Ajk and Bjk is again a system of the same type and is denoted

by Cjk = Ajk +Bjk.

Outer Product:

The outer product of two systems is obtained by multiplying each component of the

first system with each component of the second system. The order of the resulting

product is the sum of the orders of the two systems involved in forming the product.

For example, if Aij is a second order system and Bmnl is a third order system, with

all indices having the range 1 to N, then the product is fifth order and is denoted

by Cijmnl = AijBmnl. The product system represents N5 terms constructed from all

possible products of the components from Aij with the components from Bmnl. For

any two tensors A and B, we denote the outer product as C = A⊗B or C = AB.

Contraction:

The operation of contraction occurs when two indices are set equal and the summation

convention is invoked. For example, if we have a fifth order system Cijmnl and we set

i = j and sum, then we form the system

Cmnl = Cjjmnl = C11mnl + C22mnl + ...+ CNNmnl

Here the symbol Cmnl is used to represent the third order system that results when

the contraction is performed. The resulting system is always of order 2 less than the

original system.

2.1.4. e-permutation and Kronecker delta. Two symbols that are used quite

frequently with the indicial notation are the e-permutation symbol and the Kronecker
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delta. The e-permutation symbol, sometimes referred to as the alternating tensor,

deals with permutations of indices.

The e-permutation symbol is defined as:

eijk...l =

 1 if i,j,k...l is an even permutation of 123...n

−1 if i,j,k...l is an odd permutation of 123...n

 (11)

The Kronecker delta is defined:

δij =

 1 if i = j

0 if i 6= j

 (12)

Some of the useful properties of the two symbols are:

Property 1:

When an index of the Kronecker delta δij is involved in the summation convention,

the effect is that of replacing one index with a different index. For example, let aij

denote the elements of an N ×N matrix. Then the product

aijδij = akj i,j = 1,2,...N

Property 2:

Using the summation convention, δii = N i = 1,...,N

Property 3:

The determinant of a matrix A = (aij) can be represented in the indicial notation.

Employing the e-permutation symbol the determinant of an N×N matrix is expressed

as

|A| = eij...ka1ia2j...aNk

where eij...k is an Nth order system.
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Property 4:

Given the vectors Ap, p = 1,2,3 and Bp, p=1,2,3 the cross product of these two vectors

is a vector Cp, p = 1,2,3 with components

Ci = eijkAjBk, i,j,k = 1,2,3

The cross product of the unit vectors (ê1, ê2, ê3) can be represented in the index

notation by

êi × êj =


êk if (i,j,k) is an even permutation of (1,2,3)

−êk if (i,j,k) is an odd permutation of (1,2,3)

0 in all other cases

 (13)

The result can be written in the form êi × êj = eijkêk

Property 5: The e− δ identity

This identity, relating the e-permutation symbol and the Kronecker delta, can be

expressed in different forms. The indicial form for this identity is

eijkeimn = δjmδkn − δjnδkm, i,j,k,m,n = 1,2,3

where i is the summation index and j,k,m,n are free indices.

In the next two sections there is a shift of focus towards the basic principles of

quantum mechanics, necessary for understanding Liquid Crystal Theory.

2.2. Rotations in space

Rotations in 3 dimensional space are represented by unitary transformation. The

unitary operator that rotates a state |ψ > into |ψ′ >= UR|ψ > has the form:

UR = exp (− ι
~
n̂ · Lφ) (14)
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where L; the angular momentum operator and the generator of the 3-dimensional

rotations; satisfy the commutation relations:

[Li, Lj] = ι~εijkLk (15)

In terms of it’s components, the step-up and step-down operator for angular momen-

tum L = (Lm, Ln, Lk) is:

L± = Ln ± iLk (16)

Some other properties of L are:

Lk|jz >= z~|jz >,

L±|jz >=
√
j(j + 1)− z(z ± 1)~|jz ± 1 >,

L2|jz >= j(j + 1)~|jz >

(17)

where L2 = L2
m + L2

n + L2
k. The system is rotationally invariant if [L, H] = 0 where

H is the hamiltonian of the system.

2.2.1. Three dimensional rotational group: Wigner matrices (Dl
mn)

. Wigner rotation matrices or generalized spherical harmonics DJ
mn(α, β, γ) represent

matrix elements of the operator performing a coordinate system rotation of Euler

angles (α, β, γ) in an angular momentum basis. Following Rose’s [86] convention:

Dl
mn(R) =< lm|UR|ln >=< lm| exp((− ι

~
n̂ · Lφ))|ln > (18)

where

UR = exp(− ι
~
γẑ · L)exp(− ι

~
βŷ · L)exp(− ι

~
αẑ · L) (19)

The explicit form of these matrices is:
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Dl
mn(α, β, γ) =< lm|e−(ι/~)αLke−(ι/~)βLne−(ι/~)γLk |ln >

= e−ιαme−ιγn < lm|e−(ι/~)βLn|ln >

= e−i(mα+nψ)
√

(l +m)!(l −m)!(l + n)!(l − n)!

∑
s

(−1)s(cos β/2)2l+n−m−2s(− sin β/2)m−n+2s

(l −m− s)!(l + n− s)!(s+m− n)!s!
(20)

where 0 ≤ α ≤ 2π, 0 ≤ β ≤ π, 0 ≤ γ ≤ 2π. The Wigner rotation matrices form an

orthogonal basis set in the Euler angle space.

The coupling rule for these matrices can be written as

Dj1µ1,m1
Dj2µ2,m2

=

j1+j2∑
j=|j1−j2|

C(j1, j2, j, µ1, µ2)C(j1, j2, j,m1,m2)Djµ1+µ2,m1+m2
(21)

We can decompose a Wigner rotation matrix as a linear combination of products of

Wigner functions of lower rank,

DJmn =
∑
C(J1, J2, J ;m1,m2,m)C(J1, J2, J ;n1, n2, n)DJ1

m1n1
DJ2
m2n2

δm1+m2,mδn1+n2,n

=
∑
C(J1, J2, J ;m1,m−m1,m)C(J1, J2, J ;n1, n− n1, n)DJ1

m1n1
DJ2
m−m1n−n1

(22)

where the sum is extended to all indices not appearing on the left hand side.

C(a, b, c; d, e, f) are the Clebsch Gordon coefficients which are introduced next.

2.3. Clebsch-Gordon coefficients

Clebsch-Gordon (CG) coefficients play an essential role in a variety of problems in-

volving addition of angular momenta and general tensor manipulation [86]. Apart
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from more conventional applications in quantum mechanics Clebsch-Gordon coeffi-

cients are now employed in material science, statistical mechanics of condensed phases

and in particular of anisotropic fluids such as liquid crystals [87].

2.3.1. Notations. There is an impressive number of different conventions for

writing CG coefficients, even though many of them only differ in the symbols em-

ployed. We choose define the CG coefficients according to the phase convention of

Rose [86], i.e. we write the coupling coefficient between the two states of angular

momentum J1 and J2 to yield a state |J3m3 > as

|J3m3 >=
∑
m1m2

C(J1, J2, J3;m1,m2,m3)|J1m1 > |J2m2 > (23)

where C(a,b,c;d,e,f) is a Clebsch-Gordon or vector coupling coefficient and J1, J2, J3

can take non-negative integer or semi-integer values.

The angular momentum values J1, J2, J3 are said to form a triangle 4(J1, J2, J3) in

the sense that the following relations hold for the allowed values:

4(J1, J2, J3) =


J1 + J2 − J3 ≥ 0

J1 − J2 + J3 ≥ 0

−J1 + J2 + J3 ≥ 0

(24)

where (J1 + J2 + J3) is an integer. The triangular relation is symmetric in the three

angular momenta. CG coefficients formed with combinations of angular momenta

not satisfying this rule are equal to zero. The angular momentum projection values

m1,m2,m3 can take the values

m1 = −J1,−J1+1, .., J1; m2 = −J2,−J2+1, .., J2; m1 = −J3,−J3+1, .., J3 (25)

Explicit relations for the CG coefficients have been derived by Wigner [86]
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C(j1, j2, j3,m1,m2,m3) = δm3,m1+m2 × {(2J3 + 1)

(J3 + J1 − J2)!(J3 − J1 + J2)!(J1 + J2 − J3)!(J3 +m3)!(J3 −m3)!

(J1 +m1)!(J1 −m1)!(J2 +m2)!(J2 −m2)!(J1 + J2 + J3 + 1)!
}1/2×

∑
s

(−1)s+J2+m2(J2 + J3 +m1 − s)!(J1 −m1 + s)!

s!(J3 − J1 + J2 − s)!(J3 +m3 − s)!(J1 − J2 −m3 + s)!

(26)

and by Racah [89]

C(j1, j2, j3,m1,m2,m3) = δm3,m1+m2

{(J1 +m1)!(J1 −m1)!(J2 +m2)!(J2 −m2)!(J3 +m3)!(J3 −m3)!}1/2×

{(2J3 + 1)!(J1 + J2 − J3)!(J1 + J3 − J2)!(J3 + J2 − J1)!

(J1 + J2 + J3 + 1)!
}1/2×

∑
s

(−1)s

s!r1!r2!r3!r4!r5!

(27)

where r1 = (J2 + m2 − s); r2 = (J1 − m1 − s); r3 = (J1 + J2 − J3 − s); r4 = (J3 −

J2 +m1 + s); r5 = (J3− J2−m2 + s) In Eq.(26) and eq.(27) the index s takes all the

integral values leaving the argument of the various factorials non-negative. The CG

coefficients are related to the often used and more symmetric 3j symbols introduced

by Wigner [90]

C(j1, j2, j3,m1,m2,m3) = (−1)−J1+J2−m3(2J3 + 1)
1
2 (

J1 J2 J3

m1 m2 −m3

) (28)
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2.3.2. Some useful relations.

2.3.2.1. Symmetries. There are various symmetry relations that can be derived

e.g. from the general explicit expression for the CG coefficients given by Racah [89].

We have in particular:

C(J1, J2, J3,m1,m2,m3) = (−1)J1+J2−J3C(J1, J2, J3,−m1,−m2,−m3)

= (−1)J1+J2−J3C(J2, J1, J3,m2,m1,m3)

= (−1)J1−m1(2J3+1
2J2+1

)
1
2C(J1, J3, J2,m1,−m3,−m2)

(29)

From these relations some other useful equations can in turn be derived

C(J1, J2, J3,m1,m2,m3) = (−1)J2+m2(2J3+1
2J1+1

)
1
2C(J3, J2, J1,−m3,m2,−m1)

= (−1)J1−m1(2J3+1
2J2+1

)
1
2C(J3, J1, J2,m3,−m1,m2)

= (−1)J2+m2(2J3+1
2J1+1

)
1
2C(J2, J3, J1,−m2,m3,m1)

(30)

2.3.2.2. Orthogonality. The CG coefficients are elements of a unitary transforma-

tion and they satisfy orthogonality relations. These can be written as

∑
m1,m2

C(J1, J2, J,m1,m2,m)C(J1, J2, J
′,m1,m2,m

′) = δJJ ′δmm′ (31)

or ∑
m1

C(J1, J2, J,m1,m−m1,m)C(J1, J2, J
′,m1,m−m1,m) = δJJ ′ (32)

We also have

∑
J,m

C(J1, J2, J,m1,m2,m)C(J1, J2, J,m
′
1,m

′
2,m) = δm1m′1

δm2m′2
(33)

or

∑
J

C(J1, J2, J,m1,m−m1,m)C(J1, J2, J,m
′
1,m

′ −m′1,m′) = δm1m′1
δmm′ (34)
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2.3.2.3. Sum rules. Some of the useful formulas are [91]:

∑
mC(J1, J2, J1,−m, 0,−m)C(J ′1, J2, J

′
1,m−M, 0,m−M) =

(−1)2M+J2−2J1−2J ′1

2J2 + 1
[
(2J1 + 1)(2J ′1 + 1)(2J1 − J2)!(2J ′1 + J2 + 1)

(2J ′1 − J2)!(2J1 + J2 + 1)!
]1/2

∑
m1,m2,m

C(J1, J2, J,m1,m2,m)2 = (2J + 1)

∑
m(−1)mC(J, J, L,m,−m, 0) = (−1)J(2J + 1)1/2δ0L

∑
J1
{C(J1, J2, J3, 0, 0, 0)}2 =

(2J3 + 1){(J1 + J2 − J3 − 1)!!r!!}/{(J1 + J2 − J3)!!(r + 1)!!}

∑J2+J3

J1=|J3−J2|,J1 6=k(2J1 + 1){C(J1, J2, J3, 0, 0, 0)}2/{J1(J1 + 1)− k(k + 1)} = 0

(35)

where r = J1 + J2 + J3. J3− J2 ≤ k ≤ J3 + J2 and k+ J3 + J2 odd, and the following

two obtained by Morgon [92].

∑J1

J2=0

{(−1)J1−J2C(J1, J2, J1 − J2; 0, 0, 0)}2

(2J1 − 2J2 + 1)
= {(2J1)!!/(2J1 + 1)!!}

∑J1

J2=0{(−1)J1−J2C(J1, J2, J1 − J2; 0, 0, 0)}2/{(2J1 − 2J2 + 1)(2J2 − 1)2}

= 1 if J1 = 0

= {(2J1)!!/(2J1 − 2)!!}/{(2J1 + 1)!!/(2J1 − 1)!!} if J1 ε I
+

(36)
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2.3.2.4. Recurrence relations. We have two recurrence relations [86]. The first

recurrence relation allows changing the angular momentum J

{m1 −m
J1(J1 + 1)− J2(J2 + 1) + J(J + 1)

2J(J + 1)
}C(J1, J2, J ;m1,m−m1,m) =

= {(J2 −m2)(J − J1 + J2)(J + J1 − J2)(J1 + J2 + J + 1)(J1 + J2 − J + 1)

4J2(2J − 1)(2J + 1)
}1/2

C(J1, J2, J − 1;m1,m−m1,m)

+{(r2
1 −m2)(r1 − r3)(r1 + r3)(r1 + r2 + 1)(r2 − J)

4(J + 1)2(2J + 1)(2J + 3)
}1/2

C(J1, J2, J + 1;m1,m−m1,m) (37)

where r1 = J+1; r2 = J1+J2; r3 = J1−J2. The second relation relates CG coefficients

with the same angular momentum J1, J2, J but different components:

{J(J + 1)− J1(J1 + 1)− J2(J2 + 1)− 2m(M −m)}C(J1, J2, J ;m,M −m,M) =

= {(J1 −m+ 1)(J1 +m)(J2 +M −m+ 1)(J2 −M +m)}1/2

C(J1, J2, J ;m− 1,M −m+ 1,M)

+{(J1 +m+ 1)(J1 −m)(J2 −M +m+ 1)(J2 +M −m)}1/2

C(J1, J2, J ;m+ 1,M −m− 1,M)

(38)

2.3.2.5. Some special formulas. Formulas giving certain classes of vector coupling

coefficients in algebraic form can be obtained specializing the general Eq.(26) and

(27). Explicit formulas for coefficients with one of the angular momentum rank J=1,2

can be found in the celebrated book by Condon and Shortley [93]. For semi-integer

ranks, formulas for J=1/2 are reported by Rose [86], while formulas for J=3/2, 5/2

are given by Saito and Morita [94]. Here we present a small collection of results which

are particularly useful:
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C(J, J ′, 0,m,−m, 0) = (−1)J−mδJ,J ′/(2J + 1)1/2 (39)

C(J1, 0, J2,m1,m2,m1 +m2) = δJ1,J2δm2,0 (40)

C(1, 1, 0;m,−m, 0) = (−1)1−m/31/2 (41)

C(1, 1, 1;m,−m, 0) = m/21/2 (42)

C(1, 1, 2;m,−m, 0) = (1/2)|m|(2/3)1/2 (43)

C(J, 1, J ; 0,m,m) = −C(1, J, J ;m, 0,m) = −m/21/2; J > 0 (44)

C(J, 1, J + 1; 0,m,m) = C(1, J, J + 1;m, 0,m) =
√

(J + 2)/2(2J + 1); m 6= 0 (45)

C(J, 1, J−1; 0,m,m) = C(1, J, J−1;m, 0,m) =
√

(J − 1)/2(2J + 1); J > 0,m 6= 0

(46)

C(2, 2, 0;m,−m, 0) = (−1)m/
√

5 (47)

C(2, 2, 2;m,−m, 0) = (−1)mC(2, 2, 2; 0,m,m) = (−1)m(m2 − 2)/
√

14 (48)

C(2, 2, 4;m,−m, 0) = 24/{
√

70(2 +m)!(2−m)!} (49)

C(2, 2, J ; 0, 0, 0) = (−12)J/2
√

(2J + 1)(4− J)!/(5 + J)!

if J = 0,2,4 and zero otherwise
(50)

C(4, 4, 2;m,−m, 0) = (−1)m
√

5/9C(4, 2, 4;m, 0,m)

= (−1)m(3m2 − 20)/(2
√

693)
(51)
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C(J1, 3, J ;m, 0,m) =

{5(r1 +m+ 2)(r1 +m+ 1)(r1 −m+ 2)(r1 −m+ 1)(r1 −m)(r1 +m)

(r1 + 1)(r1 + 2)(2r1)(2r1 + 1)(2r1 + 3)(2r1 − 1)
}1/2;

if J = J1 + 3

(52)

r1 = J1 + 1

C(J1, 3, J ;m1, 3,m) =

{(r1 +m1 + 5)(r1 +m1 + 4)(r1 +m1 + 3)(r1 +m1 + 2)(r1 +m1 + 1)(r1 +m1)

(2r1 − 1)(2r1)(2r1 + 1)(2r1 + 2)(2r1 + 3)(2r1 + 4)
}1/2;

if J = J1 + 3

(53)
r1 = J1 + 1

C(J1, J2, (J1 + J2);m1,m2,m1 +m2) =

{(2J1)!(2J2)!(J1 + J2 +m1 +m2)!(J1 + J2 −m1 −m2)!

(2J1 + 2J2)!(J1 +m1)!(J1 −m1)!(J2 +m2)!(J2 −m2)!
}1/2

(54)

C(J1, J2, J3; 0, 0, 0) = 0 if J1 + J2 + J3 is odd

(−1)(J1+J2+J3)/2{ 2J3+1
J1+J2+J3+1

}1/2 Γ(J1+J2+J3)
Γ(J1+J2−J3)Γ(J1−J2+J3)Γ(−J1+J2+J3)

(55)

where Γ(x) = (x
2
)!/(x!)1/2, if J1 + J2 + J3 is an even integer.

2.3.2.6. Asymptotic results. A classical result due Brussaard and Toloehk:

C(J1, J2, J ;m1,m2,m) ∼= (−1)J1+J2−JdJ1
m1,J−J2

(ϑ) (56)

where the small Wigner matrix dJmn is defined in [86] and cosϑ = m/J ; J � 1,

J1 � J
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2.3.2.7. Wigner-Eckart theorem. The calculation of the matrix elements

< J1m1|T J,m|J2m2 > of an irreducible tensor operator T J,m over an angular mo-

mentum basis set is simplified by the Wigner-Eckart theorem [86] according to which

< J1m1|T J,m|J2m2 >= KJ1,J2C(J2, J, J1;m2,m,m1) (57)

where the quantity KJ1,J2 , often written as (J1 ‖ T J ‖ J2), is called a reduced matrix

element of the set of operator T J and is independent on the angular momentum

projection numbers.

2.3.2.8. Gaunt formula. This gives the integral of the three Wigner rotation ma-

trices as

∫ 2π

0
dα
∫ π

0
dβ
∫ 2π

0
dγDJ1

m1n1
(αβγ)DJ2

m2n2
(αβγ)DJ3

m3n3
(αβγ)∗ =

8π2δm1+m2,m3δn1+n2,n3C(J1, J2, J3;m1,m2,m3)C(J1, J2, J3;n1, n2, n3)/(2J3 + 1)

(58)

2.4. Measuring order and biaxiality

When one considers systems with orientational order, such as liquid crystals, there

are various aspects of the ordering that one wishes to quantify. Two such properties

are the overall director of the system and the extent to which it exhibits biaxiality.

This section provides an introduction to some of the order parameters of interest in

the study of liquid crystals.

In the following sections we will consider the problem of identifying an overall system

director for a system of molecules, and quantifying the extent to which the system

might be regarded as ordered. The simplest situation in which we can consider this is

when the system comprises of molecules with one axis of rotational symmetry; if the

molecules are not aligned with equal probability in every direction, the system is said
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to exhibit nematic order, and we can use the axis of rotation, or the molecule director,

to determine a preferred direction for the system, or the system director. It may also

be that a system of such molecules picks out another preferred direction - if it does so,

we say that the system is biaxial. We also consider this possibility. Next we consider

the situation where each molecule can be associated with an orthonormal basis of unit

vectors, i.e. the case where they do not have rotational symmetry about any axis;

in this case the axes may be (for example) the eigenvectors of the molecule’s inertia

tensor. We can see once more how to identify a preferred direction for the system,

and so a nematic order associated with one of its axes; and now we can investigate

whether there is any other preferred direction associated with the remaining axes, i.e.

whether the system is biaxial in this sense. Finally, we will briefly discuss the two

notions of biaxiality that have been presented.

If a molecule has rotational symmetry, we associate with it a unit vector m, which

points along the axis of symmetry of the molecule. If it does not have rotational

symmetry, then we associate with it an orthonormal set of vectors, n,k,m, which

may refer to the semi-axes of an ellipsoid which models the shape of the molecule, or

its principle axis of inertia, but not in general. Whenever we consider the components

of a vector, it will be with respect to some fixed laboratory set of axes, which we will

denote Ex, Ey and Ez. Now, these vectors are attached to each molecule comprising

the system under consideration; so if we label the molecules by i, where i = 1...N ,

then we have vectors m(i) or n(i), k(i), m(i) depending on the degree of symmetry of

the molecules.

There are two ways of thinking about order parameters. One approach is to con-

sider explicitly the orientational distribution function (PDF), and extract the order

parameters from this PDF by using a spherical harmonic decomposition. This is anal-

ogous to expressing a function in terms of Fourier series and considering the Fourier

coefficients as relative contributions of the various harmonics.
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Another approach considers how to extract these same order parameters from tensors,

or dyadics, constructed from the vectors n(i), k(i) and m(i). We define the dyadic Qzz

in two stages: first, we define P zz, constructed from the vectors m(i):

P zz =
1

N
(
N∑
i=1

m(i)m(i)) =< mm > (59)

The angle brackets indicates the ensemble average. Finally, we define the Saupe order

tensor [95] by

Qzz = (3P zz − I)/2 (60)

The definitions of P xx, P yy, Qxx and Qyy are obtained by replacing m(i) by n(i) or

k(i) appropriately.

Also, note the following two observations. First, the P and Q dyadics have the same

eigenvectors, but that if v is an eigen vector of P with eigenvalue γ, then it is an

eigenvector of Q with eigenvalue (3γ − 2)/2. Second, the Q dyadics are constructed

to have trace zero, so that the sum of the eigenvalues of a Q dyadic is automatically 0.

Because of this relationship between the P and Q dyadics, everything could be done

entirely with reference to the Q dyadics, an approach used in [56]. The difference

between that approach and the one followed here is that a different strategy is adopted

for identifying the dominant eigenvalue.

2.4.1. Nematic order for Uniaxial Molecules. First we consider the case

where the molecules have rotational symmetry about some axis, labeled as m. We

also assume that the molecule has the symmetry of an ellipsoid of revolution, so that

there is no way to distinguish m from −m.

The question of how well the directors of a rotationally symmetric molecule, can be

addressed in terms of a distribution function describing the proportion of molecules

whose directors are in a neighborhood of a given angle away from some reference axis.
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More precisely, fix a reference direction Ez and let f(θ) be such that f(θ)dθ is the

fraction of molecules in a sample whose directors make an angle between θ and θ+dθ

with the reference direction.

f(θ) can be expanded in various ways. One particularly useful expansion uses the

Legendre polynomials [55];

f(θ) =
∞∑
l=0

plPl(cos(θ)) (61)

where the functions Pl(cos(θ)) satisfy the orthogonality relations

∫ π

0

sin(θ)Pl(cos(θ))Pm(cos(θ))dθ =
2δlm

2l + 1
(62)

and also have the property that for even l, Pl is an even function while for odd l, Pl

is odd. In our case, where there is no distinction between m and −m, this implies

that only the even Legendre polynomials contribute to P .

Using the orthogonality relationship, we have

pl =
2l + 1

2
< Pl > (63)

where

< Pl >=

∫ π

0

sin(θ)Pl(cos(θ))f(θ)dθ (64)

and for a particular sample this can be computed by averaging the value of Pl(cos(θ))

over all the molecules in the sample. We thus obtain

f(θ) =
1

2
+

5

2
< P2 > P2(cos(θ)) + ... (65)

and < P2 > is the first order measure of how well the molecule directors are ordered

in the direction Ez.
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When Ez is the direction which maximizes this quantity, we regard Ez as the system

director (describing the average axis along which the molecules may be regarded as

aligned) and the order parameter is called S. This approach was first developed by

Tsvetkov [54].

In particular, we note that if S is positive, then the directors of the molecules have Ez

as the preferred direction; if S is negative, then the directors avoid Ez. An isotropic

system, i.e. one with no preferred direction, has S = 0.

We can also obtain S in a more direct manner using one of the tensors defined above.

For each molecule i specifies a unit vector, m(i), and we have the tensor Qzz defined

in the introduction. A natural way to associate special vectors with a matrix, is to

consider its eigenvectors. Since Qzz is symmetric, it has three orthogonal eigenvectors

and all eigenvalues are real. One obvious candidate for a preferred direction for the

system is the eigenvector associated with the dominant eigenvalue (i.e. the eigenvalue

of the greatest absolute value).

Consider this by picking one particular direction for Ez, and some unit vector v. Then

vT (3EzE
T
z − I)/2v = (3 cos2(θ)− 1)/2 (66)

where θ is the angle between Ez and v, and so

vTQzzv =< (3 cos2(θ)− 1)/2 > (67)

In this case we see immediately that if v is an eigenvector of Qzz with associated

eigenvalue λ, then vTQzzv = λ. If M is any symmetric matrix, and v is a unit vector,

then the largest value of |vTMv | is the modulus of the dominant eigenvalue of M,

and this value is obtained when v is the associated eigenvector [53]. Thus the v which

maximizes this quantity is exactly the director defined by Tsvetkov.
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So we find that in this picture the eigenvector associated with the dominant eigenvalue

of Qzz is the system director, and the eigenvalue itself is the measure of how ordered

the system is about that director.

We thus see from two different perspectives how an overall order parameter for the

system may be defined, and that it may be easily computed once the Saupe order

tensor is obtained.

Once we have our system director, we can ask how the molecule directors are dis-

tributed about it. The size and sign of S tell us how clustered the molecule directors

are, and whether they are clustered in the direction of the director or orthogonal

to it. We can also consider how the system behaves when it is rotated about the

director. It may be that the system is symmetric under this operation, in which case

it is uniaxial. On the other hand, if rotation about the director is not a symmetry,

then there is a preferred direction orthogonal to the director, and the system is said

to be biaxial.

To investigate this, we project the directors of the molecules to the plane orthogonal

to the system director. If the director to a molecule is equally likely to point in any

one of those directions, then the system has no biaxiality; on the other hand, if the

director has a preferred direction, then the system does display biaxiality. To give

some measure of this, we diagonalize the matrix Qzz; in other words, we find its

components in a basis built out of its eigenvectors. This gives a matrix of the form


qx 0 0

0 qy 0

0 0 qz

 (68)

where |qz| ≥ |qy| ≥ |qx|.

But we know that qz = S, and that qx + qy + qz = 0, so we can re-write this as
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
−S/2− ζ 0 0

0 −S/2 + ζ 0

0 0 S

 (69)

So we can see that ζ, which is given by half the difference between the smaller eigen-

values of Qzz measures the extent to which it is possible to distinguish a direction in

the plane orthogonal to the director. If ζ = 0, then the system is unchanged by a

rotation about the director; if ζ is non-zero, there is a preferred direction orthogonal

to the director, and we have a biaxial system.

This can be given a geometric interpretation as follows: we regard the density of

molecule directors as determining an ellipsoid in space. Then the major axis of

this ellipsoid lies along the system director, and its magnitude determines the order

parameter. The difference between the minor axes is a measure of the extent to which

the molecule directors are not equally scattered in all directions perpendicular to the

system director, and gives the biaxiality parameter.

We can also see the connection between this measure of biaxiality and the distribution

function for the molecule directors in the system by using a decomposition of the

density function in terms of spherical harmonics. We fix a set of axes, Ex, Ey and Ez

and consider the PDF f(θ, φ) which describes the probability of a molecule director

making an angle θ with Ez direction and its projection to the Ex, Ey plane making

an angle of φ with the Ex direction.

The PDF f(θ, φ) can now be expanded in terms of the usual spherical harmonics,

Yln(θ, φ); however, it is usual in this context to use instead the Wigner rotation

matrices [86] which are multiples of the spherical harmonics. The rotation matrices

which are relevant here are those of the form Dl
0n, where Dl

0n is a multiple of Yln, and

the first few are given by
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D0
00(θ, φ) = 1

D2
00(θ, φ) = P2(cos(θ))

D2
0±2 =

√
3

8
sin2(θ)exp(∓2φι)

(70)

In terms of these functions,

f(θ, φ) =
1

4π

∞∑
l=0

l∑
n=−l

(2l + 1) < Dl∗
0n > Dl

0n(θ, φ) (71)

where the averaged quantities are known as the orientational order parameters.

Now, the components of the unit vector determined by a molecule director with angu-

lar coordinates θ, φ in some coordinate system are given by (sin(θ) cos(φ), sin(θ) sin(φ),

cos(θ)) and so the Saupe’s matrix Szz is obtained by averaging the matrix


3
2

sin2(θ) cos2(φ)− 1
2

sin2(θ) cos(φ) sin(φ) sin(θ) cos(θ) cos(φ)

sin2(θ) cos(φ) sin(φ) 3
2

sin2(θ) sin2(φ)− 1
2

sin(θ) cos(θ) sin(φ)

sin(θ) cos(θ) cos(φ) sin(θ) cos(θ) sin(φ) 3
2

cos2(θ)− 1
2

 (72)

over the system.

Thus, if the axes Ex, Ey and Ez are chosen to be eigen directions of Szz (with the z-

direction associated with the dominant eigenvalue) then we have

Szz =


< 3

2
sin2(θ) cos2(φ)− 1

2
> 0 0

0 < 3
2

sin2(θ) sin2(φ)− 1
2
> 0

0 0 < 3
2

cos2(θ)− 1
2
>


(73)

which can be expressed in terms of the orientational order parameters listed above,

giving
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Szz =


√

6
2
Re < D2

02 > −1
2
< D2

00 > 0 0

0 −
√

6
2
Re < D2

02 > −1
2
< D2

00 > 0

0 0 < D2
00 >


(74)

From this we see that the biaxiality parameter identified above via the eigenanalysis

of Szz is given by −
√

6Re < D2
02 > /2, and so can be understood as arising from the

spherical harmonic decomposition of the director’s PDF in the appropriate coordinate

system. This also enables an alternative computation of the order parameters, which

can be used as a consistency check: once the appropriate axes have been found by

diagonalization of Qzz, the order parameters can be calculated by numerically finding

the spherical harmonic decomposition of the distribution function for the molecule

director in this coordinate system. Readers are requested to refer Zannoni’s work [87]

for more details.

2.4.2. Order for systems of Biaxial Molecules. In this section, we consider

the case where the molecules have less symmetry, and so a set of three orthonormal

axes can be attached to each molecule. Because of the loss of symmetry of the

molecule, there is a new way in which biaxial behaviour can occur.

In the ideal case, we imagine a system of molecules where all the m(i) are perfectly

aligned. Then the n(i) and k(i) all lie in a common plane, and it may be that these axes

themselves determine preferred directions in this plane, which again we can regard as

biaxial behaviour. Note that this form of biaxiality is distinct from the previous one,

as ζ must be exactly 0 if all the directors are perfectly aligned.

We can now define three tensors, namely Qxx, Qyy and Qzz. Again, we define an over-

all director for the system; but this time, we do not have a single molecular director

to work with. The solution is straightforward. We find the dominant eigenvalue of
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each of Qxx, Qyy and Qzz, and the associated eigenvectors, and take as system direc-

tor that eigenvector associated with the dominant eigenvalue of the greatest absolute

value.

This provides us with an overall director for the system, and an order parameter that

measures the extent to which the system is ordered in that direction. But now we

can consider the possibility raised above, namely that the secondary molecular axes

determine a preferred direction. So how do we measure the extent to which a system

is biaxial in this sense?

One way is to consider axes perpendicular to the overall system director [52]; we

will call the system director the Ez axis, and then Ex and Ey must be chosen to

complete this to a right-handed orthonormal system, as usual. There are various

possibilities for just which quantities we might consider constructing out of the Qxx

and Qyy tensors, together with these new axes. If we have chosen Ex and Ey axes,

with associate unit vectors X and Y respectively, then XTQxxX measures the extent

to which the x-axes of the molecules are aligned with the Ex direction, and so on.

We then see a measure of biaxiality is given by

B =
1

2
(XTQxxX + Y TQyyY −XTQyyX − Y TQxxY ) (75)

which is the difference between how well the molecules’ x-axes and y-axes are aligned

with the Ex and Ey direction respectively and how well they are aligned with the Ey

and Ex directions respectively. If the molecules’ x and y axes are perfectly aligned with

the Ex and Ey directions respectively (or with the Ey and Ex directions respectively),

this quantity is 1 (or -1), while if they are equally likely to point in any direction

normal to Ey, it is 0. Thus a non-zero value for this indicates a degree of biaxiality in

the system. As with the case of the uniaxial system, to give a measure of the biaxiality

of the system, we want to find the X and Y axes which maximize this quantity; if the

53



www.manaraa.com

maximum is zero, then the system does not distinguish any particular orientation in

the plane orthogonal to Z, while if it is 1, then the x and y axes are perfectly ordered.

The question remains: how do we identify the X and Y axes that provide our biaxiality

measure? We cannot just use the eigenvectors of Qxx and Qyy, because there is no

guarantee that they will be orthogonal to Z, or to each other. (Though for highly

ordered systems they are approximately so.) One approach, used by Allen [52] in the

study of a system of ellipsoids, is to use the eigenvalues of Qxx and Qyy, and project

the relevant one of these to the plane orthogonal to the system director.

Now, one might initially consider using the dominant eigenvalues of these, but this is

not appropriate. For if the dominant eigenvalue of greatest magnitude is negative,

then we are picking out a direction avoided by the molecular x or y axis, and in

the case of a system with significant nematic order, this will be (approximately)

orthogonal to the plane perpendicular to the system director - in other words it will

be approximately parallel to the system director. In the extreme case where we have

perfect nematic order, this eigenvector will in fact be parallel to the system director,

and its projection to the plane orthogonal to the system director will vanish. Instead,

we use the largest positive eigenvalue, and its associated eigenvector.

The projection orthogonal to Z of the eigenvector associated with the larger of these

two is then taken to define the Y axis, and X is obtained by completing the set of axes

to a right-handed orthogonal system. This procedure provides one with the required

biaxiality parameter.

Again the parameter can be defined in terms the average value of a combination

of the Wigner rotation matrices. To do this, we consider the Euler angles (θ, φ, ψ)

associated with the rotation taking each molecule from some reference orientation to

its orientation in the sample. For each state of the sample there is an associated PDF

f(θ, φ, ψ) given the probability that the orientation of any molecule in the system is

54



www.manaraa.com

described by the Euler angles (θ, φ, ψ). The process is similar to that outlined in the

case of uniaxial molecules, and more details can be found in [87].

2.4.3. The fourth order parameter. Since the order matrices Qxx, Qyy and

Qzz are constrained by the following relation

Qxx +Qyy +Qzz = I (76)

and the sum of eigenvalues of each of these matrices equals 1. We have just 4 inde-

pendent eigenvalues for the triad (Qxx, Qyy, Qzz). Hence they should naturally serve

as the four order parameters. The fourth order parameter is constructed as follows:

S ′ =
1

2
(ZTQzzZ + Y TQyyY − ZTQyyZ − Y TQzzY ) (77)

This order parameter gives the phase biaxiality along with the order parameter ζ

(described in section 2.4.1). However S’ should only be used if ζ = 0, because if ζ =

0, then S’ determines whether the system indeed shows phase biaxiality or not.

Hence we have seen that there are two ways in which biaxiality can arise in a system

of molecules , and these two are essentially independent. One measures the residual

ordering of the director of the molecules in the plane orthogonal to the system director,

while the other measures the extent to which the molecules’ other axes are ordered

in the plane orthogonal to the system director.

In this section, we have explored just one way of describing orientational ordering in

a biaxial system of molecules. However, this does not exhaust the possible ways in

which biaxiality can arise in a system composed of molecules with at most uniaxial

symmetry. If we interpret biaxial as any system with more than one direction picked

out, then a system with significant S where the particles are confined to layers not

orthogonal to Z is also biaxial; because the plane in which the molecules lie contains

precisely one axis orthogonal to Z. This form of biaxiality (not considered in this
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section) is related to the positional ordering of the system and is especially common

in Smectic C phase of liquid crystals.

2.5. Phase transition and tricriticality

In this section, we give an example of first-order phase transition (Section 2.5.1)

and then an example of a ”tricritical” point (Section 2.5.2).

2.5.1. First-order nematic-to-isotropic transition. As discussed in Chap-

ter 1, liquid crystals are composed of long, barlike molecules . In the isotropic fluid

phase, the orientations and positions of the molecules are random. In the nematic

phase, the positions of the molecules are still random, but their long axes are ori-

ented on the average along a particular direction specified by a unit vector n called

the director. Thus, the nematic phase is characterized by broken rotational but not

translational symmetry. It is, therefore, tempting to associate the order parameter

with the unit vector να which points along the long axis of molecule α located at po-

sition xα. However, since the nematic molecules either have a center of inversion or,

if they do not, they have equal probability of pointing parallel or anti-parallel to any

given direction, both να and -να contribute to the order. Thus any order parameter

must be even in να. Since a vector order parameter is insufficient, we can try a sec-

ond rank tensor. We require the order parameter to be zero in the high-temperature

isotropic phase. A symmetric traceless tensor will yield zero when averaged over di-

rections, so we construct the order parameter from the symmetric traceless tensor

formed from να. Let

Qij =
V

N

∑
α

(ναi ν
α
j −

1

3
δij)δ(x− xα), (78)

where ναi is the ith component of να. The factor of V/N is introduced in the defini-

tion of Qij to make it unitless as is conventionally done. Let Q
¯

be the tensor with

components Qij. Note that Tr Q
¯

= 0 since να is a unit vector. In the ordered state
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〈Q
¯
〉 is not zero. In a coordinate system with one axis along the direction of molecular

alignment, the matrix 〈Q
¯
〉 is diagonal:

〈Q
¯
〉 =


2
3
S 0 0

0 −1
3
S + η 0

0 0 −1
3
S − η

 (79)

If η is nonzero, Q
¯

is biaxial, and there are two, rather than one, preferred directions.

Except in exceptional cases, nematic liquid crystals are uniaxial so that η = 0. In

this case,

〈Qij〉 = S(ninj −
1

3
δij), (80)

where the unit vector n, called the Frank director, specifies the direction of the

principal axis of 〈Qij〉. From Eq.(78)

S =
1

2
〈3(να · n)2 − 1〉 =

1

2
〈(3 cos2 θalpha − 1)〉, (81)

where θα is the angle between the molecular axis and the director n.

We are now in a position to construct a Landau free energy for a nematic liquid

crystal. The free energy density f must be invariant under all rotations. Q
¯

transforms

like a tensor under the rotation group. f must, therefore, only be a function of the

scalar combinations Tr 〈Q
¯
〉p, p = 2, 3, . . . that are invariant under rotations. The term

with p = 1 is just the trace of 〈Q
¯
〉 and is by definition zero. Thus, there is no term

linear in 〈Q
¯
〉 in the free energy. To fourth order in Q

¯
, we therefore have

f = 1
2
r(3

2
Tr〈Q

¯
〉2)− w(9

2
Tr〈Q

¯
〉3) + u(3

2
Tr〈Q

¯
〉2)2,

= 1
2
rS2 − wS3 + uS4.

(82)

In general, there should be two fourth-order terms proportional, respectively, to (Tr

〈Q
¯
〉2)2 and Tr 〈Q

¯
〉4. However, for 3× 3 symmetric traceless tensors, they are strictly
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proportional, and we need only include the (Tr 〈Q
¯
〉2)2 term. As before, r is positive

at high T and negative at low T . We choose

r = a(T − T ∗) (83)

u and w are independent of temperature.

Figure 2.1. Free energy density f as a function of order parameter S
for different T for the isotropic-nematic transition. The transition is
first order. Note the limits of metastability for supercooling (T ∗) and
superheating(T ∗∗).

The free energy of Eq.(82) differs from that of the Ising model by the presence of

the third-order term −wS3. If the order parameter for the nematic phase were a

vector (as might be imagined if the constituent molecules lacked inversion symmetry)

rather than a tensor, then odd order terms would be prohibited in the free energy

by rotational symmetry. However, the rodlike molecules have a quadrupolar rather

than a dipolar symmetry, and the order parameter is a tensor for which rotational

invariance does not rule out the odd terms. Note that the quadrupole symmetry is

also reflected in the form of the order parameter in Eqs.(80) and (81). f is sketched as

a function of S for various values of T in Figure 2.1. Note that the cubic term leads to

an asymmetry in f as a function of S and the emergence of a secondary minimum at

finite S. The value of f at this minimum is greater than zero at high temperature but
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becomes equal to zero at a critical temperature Tc that is greater than the temperature

T ∗ at which the extremum at the origin develops negative curvature. Since f is less

than zero at the secondary minimum for all T < Tc, there is a phase transition with

a discontinuous change in S at Tc, i.e. there is a first-order transition at Tc. T
∗ is the

limit of metastability of the isotropic phase since, for T ∗ < T < Tc, the origin is still a

local minimum even though it is not a global minimum. The limit of metastability of

the nematic phase occurs at the temperature T ∗∗ at which the secondary minimum

disappears on heating.

The first-order transition temperature Tc and the value Sc of S at Tc are calculated

by requiring that f be an extremum with respect to S in equilibrium and that the

free energies of the disordered and the ordered phases be equal at the transition. The

latter condition implies that the isotropic and the nematic phases can coexist at the

transition temperature. If other variables, such as pressure or density, were included

in our treatment, the two phases would coexist along a line rather than a single point.

The equations determining Tc and Sc are, therefore,

∂f
∂S

= (r − 3wS + 4uS2)S = 0

f = (1
2
r − wS + uS2)S2 = 0

(84)

Thus,

Sc =
w

2u
, rc = a(Tc − T ∗) =

w2

2u
(85)

The entropy per unit volume of the disordered phase is zero in mean-field theory,

whereas that of the nematic phase is negative. This result can be obtained from the

free energy of the nematic phase, which to the lowest order in r − rc is

f =
1

2
(r − rc)S2

c =
1

2
(r − rc)(w/2u)2 (86)
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The example of the isotropic-to-nematic transition is representative of phase transi-

tions in which the order parameter possesses a third-order invariant. One expects in

general that such transitions will be first order. Though the above Landau theory

correctly predicts qualitative properties of first- order transitions, it certainly cannot

make detailed quantitative predictions. This is because the order parameter is not

zero at the transition. One is not justified, therefore, in truncating the power series

expansion of f at fourth order. Even in mean-field theory, higher order terms in this

expansion will lead to corrections both to Tc and Sc. If, however, the transition is

nearly second order, as would be the case if the predicted value of Tc − T ∗ is small,

the truncated model is a reasonable approximation.

2.5.2. Tricritical points. In the preceding section, we found that third-order

invariants lead to first-order transitions. First-order transitions can also occur if

symmetry prohibits odd-order terms. Consider the follow Landau free energy:

f =
1

2
rφ2 + u4φ

4 + u6φ
6, (87)

where r = a(T − T∗). If u4 is positive, the sixth-order term can be neglected in the

vicinity of the predicted second-order transition. If, on the other hand, u4 is negative,

the sixth- order term is required to maintain stability. In this case, secondary minima

symmetrically placed about φ = 0 develop as T is lowered, as shown in Fig. Figure 2.2.

When the free energies of the secondary minima with φ 6= 0 pass through zero, there

is a first-order transition as in the isotropic-to-nematic example.

When u4 < 0, the first-order transition temperature is determined by the conditions

f (rc, φ) = 0 and ∂f (rc, φ)/∂φ = 0 just as for the nematic liquid crystal. This leads to

rc = a(Tc − T ∗) =

 0 if u4 > 0;

1 if u4 < 0.

 (88)

The phase diagram described by this equation in the r − u4 plane is shown in Fig-

ure 2.2. The line of second-order transitions for u4 > 0 is called a lambda line. (first
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Figure 2.2. f for a φ6 potential [ Eq.(87)] with u4 negative. There
is a first-order transition at T = Tc, T

∗∗ and T ∗ are, respectively, the
limits of metastability on heating and cooling.

observed at the normal-to-superfluid transition in liquid helium mixtures. The super-

fluid transition is often referred to as a λ transition.) It meets the line of first-order

transitions for u4 < 0 at a tricritical point, (r, u4) = (0,0).

The value of the order parameter and the limit of metastability on heating can be

calculated as in the previous section:

φc = ±[|u4|/(2u6)]1/2,

r∗∗ = a(T ∗∗ − T ∗) = 2|u4|2/(3u6).
(89)

Notice that both φc and q go to zero at the tricritical point where there is no longer a

first-order transition. Note also that along the first-order line there is coexistence of

three phases: the disordered phase with φ = 0 and two ordered phases with φ = ±|φc|.

When u4 = 0, there is a second-order transition but with an order parameter critical

exponent β of 1/4 rather than 1/2:

φ = ±[−r/6u6]1/4. (90)
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Similarly, when an external ordering field h is applied at the tricrical point,

φ = [h/6u6]1/5, (91)

implying that the exponent δ is 5 rather than 3. The other critical exponents, γ and

ν, for the tricritical point are the same in mean-field theory for u4 = 0 and u4 > 0.

Figure 2.3. Phase diagram for the free energy of Eq.(87). The line
r = 0, u4 > 0 is a second-order lambda line, shown as a single line
in the figure. The line r = 1

2
|u4|2/u6 is a line of first-order transition,

shown as a double line in the figure. The point TP, r = 0, u4 = 0, is a
tricritical point.

Figure 2.3 depicts the phase diagram in the vicinity of a tricritical point in the most

natural variables for the model free energy of Eq.(87). In real systems, all of the

potentials are functions of the experimentally controllable parameters such as tem-

perature, pressure, chemical potential, concentration of species, or external magnetic

field. Physical phase diagrams with tricritical points will thus be rotated and stretched

version of Figure 2.3. We will now consider some physical systems exhibiting tricrit-

ical points, the microscopic models used to describe them, and how their mean-field

energy can be cast into a form similar to Eq.(87).

62



www.manaraa.com

Chapter 3

Rotational Diffusion Equation

In this Chapter we derive the rotational diffusion equation governing the orientational

dynamics for rigid biaxial ellipsoids. In section 3.1, we provide the basic understand-

ing of the kinetic theory developed in [85] and derive this equation in the molecular (or

rotating) frame. Finally, in section 3.2, we describe the Wigner-Galerkin expansion

of this equation.

3.1. Kinetic Equations: Doi Model

3.1.1. System with rigid constraints in macroscopic flow. Consider a sys-

tem of particles (modeled a beads) in a macroscopic velocity gradient, subject to rigid

constraints. This is necessary to deal with the problems of suspensions of a rigid body

or polymers with rigid constraints (such as the rod like polymer, or the freely jointed

model).

(i) In the freely jointed model, the beads (at position vector Rn) are successively

connected at constant distance b, so that

(Rn −Rn−1)2 − b2 = 0, n = 1, 2, ..., N (92)

(ii) In the rigid body model, the mutual distance between the beads is fixed.

When the constraints are introduced, the forces acting on the particles Fm is not

a function of R and must be determined by the equation of motion, which is the

hydrodynamic relation.
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Vm = κ ·Rm + ΣnHmn · Fn (93)

where Vm is the velocity of particles and Hnm is the mobility matrix.

We use the method of generalized coordinates which are independent of each other,

and specify the configuration of beads uniquely. The generalized coordinates stands

for the three components of the position vector of the center of mass, and the three

Euler angles specifying the orientation of the rigid body.

3.1.2. Method of generalized coordinates. Let {Q} ≡ Q1, Q2, ..., QNf be the

set of generalized coordinates. The position vector Rm expressed as a function of {Q}

as

Rm = Rm({Q}), m = 1, 2, ..., N (94)

The velocity of the particle in terms of the velocity of the generalized coordinate Va

is

Vm = Σ
Nf
a=1

∂Rm

∂Qa

Va (95)

Using the summation convention, we write Eq.(95) as

Vm =
∂Rm

∂Qa

Va (96)

To obtain Fm, we use the principle of virtual work. Consider the work necessary to

change Qa by δQa, which is

δ(U + kBT ln Ψ) = [
∂

∂Qa

(U + kBT ln Ψ)]δQa (97)

Alternatively, work can also be calculated using the force Fm and the displacement

δRm caused by the change in Qa, i.e.
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δ(U + kBT ln Ψ) = −Fm · δRm (98)

where

δRm =
∂Rm

∂Qa

δQa (99)

Hence, from Eqs. (97,98,99) we have

Fm ·
∂Rm

∂Qa

= − ∂

∂Qa

(U + kBT ln Ψ) (100)

Eqs. (95,93,100) determine Va and Fm. To obtain Fm and Va explicitly, we solve

Eq.(93) for Fn :

Fn = (H−1)nm · (Vm − κ ·Rm)

= (H−1)nm · (
∂Rm

∂Qa

Va − κ ·Rm)
(101)

From Eqs.(100,101), we have

∂Rn

∂Qa

· (H−1)nm · [
∂Rm

∂Qb

Vb − κ ·Rm] = − ∂

∂Qa

(U + kBT ln Ψ) (102)

Define

(h−1)ab =
∂Rn

∂Qa

· (H−1)nm ·
∂Rm

∂Qb

(103)

and

FE
a = − ∂

∂Qa

(U + kBT ln Ψ) (104)

and

V (V )
a = hab

∂Rn

∂Qb

· (H−1)nm · κ ·Rm (105)

Hence
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(h−1)ab(Vb − V (V )
b ) = F (E)

a (106)

which can be solved using hab, the inverse of (h−1)ab, giving

Va = V
(V )
a + habF

(E)
b

= −hab
∂

∂Qb

(U + kBT ln Ψ) + V
(V )
a

(107)

Hence

Fn = (H−1)nm · (
∂Rm

∂Qa

habF
(E)
b +

∂Rm

∂Qa

V (V )
a − κ ·Rm) (108)

In generalized coordinate space, the conservation equation is

∂Ψ

∂t
= − 1
√
g

Nf∑
a=1

∂

∂Qa

[
√
gVaΨ] (109)

where g is the determinant of the matrix gab defined by

gab =
∂Rm

Qa

· ∂Rm

Qb

(110)

Thus the diffusion equation is obtained as

∂Ψ

∂t
=

1
√
g

∂

∂Qa

√
g[hab(kBT

∂Ψ

∂Qb

+
∂U

∂Qb

Ψ)− V (V )
a Ψ] (111)

3.1.3. Rigid Ellipsoids. The molecular axis (m, n, k) in terms of the Euler

angles (α, β, γ) are defined as

m = (cosα sin β, sinαsinβ, cos β),

n = (cosα cos β cos γ − sinα sin γ, sinα cos β cos γ + cosα sin γ,− sin β cos γ),

k = (− cosα cos β sin γ − sinα cos γ,− sinα cos β sin γ + cosα cos γ, sin β sin γ)

(112)
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The position vector of a particle on the ellipsoid is R = (am, bn, ck) where (a,b,c)

are the lengths of the respective axis. Hence, using Eqs.(103,112), we have:

h =


h11 h12 h13

h21 h22 h23

h31 h32 h33

 (113)

where hij = hji and

h11 =
a2 + b2 cos2 γ + c2 sin2 γ

(a2 + b2)(a2 + c2) sin2 β
, h12 = − (b2 − c2) sin γ cos γ

(a2 + b2)(a2 + c2) sin β
,

h13 = − cos β
a2 + b2 cos2(γ) + c2 sin2(γ)

(a2 + b2)(a2 + c2) sin2 β
, h22 =

a2 + b2 sin2 γ + c2 cos2 γ

(a2 + b2)(a2 + c2)
,

h23 =
(b2 − c2) sin γ cos γ cos β

(a2 + b2)(a2 + c2) sin β
,

h23 =
a4 sin2 β + c4 cos2 β sin2 γ + b4 cos2 β cos2 γ + a2c2 + a2b2 + b2c2

sin2 β(a2 + b2)(c2 + b2)(c2 + a2)

(114)

The determinant (g) is

g = sin2 β(a2 + b2)(c2 + b2)(a2 + c2) (115)

The derivatives in the fixed (x,y, z) frame and the moving frame (m,n,k) are related

as

[∂α, ∂β, ∂γ]
T = [Lm, Ln, Lk]

TAT (116)

where (Lm, Ln, Lk) are the derivatives in the molecular rotating frame (details in

Appendix ??) and the transformation matrix A is
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A =


cos β − sin β cos γ sin β sin γ

0 sin γ cos γ

1 0 0

 (117)

From Eq.(111) we have

∂Ψ

∂t
=
kBT√
g

(
∂

∂Qa

)T
√
ghabΨ(

∂

∂Qb

)µ− 1
√
g

(
∂

∂Qa

)T
√
ghabΨ ·

∂Rn

∂Qb

·K ·Rn (118)

where (Q1, Q2, Q3) = (α, β, γ) Define Ψ̃ =
√
gΨ and using Eq.(116), we get

∂Ψ̃/∂t = L∗ ·D · LµΨ̃− L∗ ·D · Ψ̃(LRn) ·K ·Rn

= L∗ ·D · LµΨ̃− L∗ ·D · Ψ̃−→g
(119)

where D is the diffusion matrix given by

D = diag[
ζ

b2 + c2
,

ζ

a2 + c2
,

ζ

a2 + b2
] (120)

and the vector −→g is

−→g = ι[ m
b2+c2

(K : (b2nk− c2kn)) + n
a2+c2

(K : (c2km− a2mk)) + k
a2+b2

(K : (a2mn− b2nm))]

(121)

In the fixed frame, the shear-flow tensor K′ is

K′ =


0 ν 0

0 0 0

0 0 0

 (122)

In the molecular frame (m,n,k) the tensor is

K = RTK′R (123)
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3.2. Kinetic Equations: Galerkin Approximation

Having reviewed the neccessary Quantum Mechanical concepts in Chapter 2, we

are now in a position to write the Wigner function expansion of the Smoluchowski

Eq.(119) derived in Section 3.1.

3.2.1. Excluded Volume potential: U . In almost every models of polymers,

the interaction among the polymer segments is limited to within a few neighbours

along the chain. In reality, however, segments distant along the chain do interact if

they come close to each other in space. An obvious interaction is the steric effect:

since the segment has finite volume, other segments cannot come into its own region.

This interaction swells the polymer; the coil size of a chain with such an interaction

is larger than that of the ideal chain which has no such interaction. Even when there

are attractive forces, as long as the repulsive force dominates, the polymer will swell.

This effect is called the excluded volume effect.

The excluded volume effect represents the effect of the interaction between segments

which are far apart along the chain. (refer Figure 3.1a) Such an interaction is often

called the long range interaction in contrast to the ’short range interaction’ which

represents the interaction among a few neighbouring segments. The terms ’long’

and ’short’ represent the distance along the chain, not the spatial seperation. The

excluded volume effect was first discussed by Kuhn [65], and the modern development

was initiated by Flory [66, 67]. Once the long range interaction is introduced, exact

calculation becomes impossible. A great deal of work has been done on this problem

and a detailed description is given in various literatures [70, 71, 68, 69].

We construct our intermolecular excluded volume potential based on the ideas given

in [97, 98, 99, 100, 101, 102]. Biaxial molecules can be schematically described as

bricks or platelets (refer Figure 3.1b)
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Figure 3.1. (a) Excluded volume interaction.(b) A simple biaxial molecule

In every platelet, we distinguish the major axis m from the two minor axes n and

k.The anisotropic part of every molecular biaxial tensor can be described by two

traceless, orthogonal components, defined as:

q = mm− 1
3
I

b = nn− kk
(124)

If m is interpreted as the long molecular axis, then q is the uniaxial tensor representing

the dominant geometric feature of the molecules, while b represents their secondary

biaxiality. Let two molecules be described by the pairs of tensors (q,b) and (q’,b’ ).

Straley [101] suggests that the most general orientational interaction energy or the

excluded volume energy U between them, which is linear in each pair of tensors and

invariant under their exchange, has the form:

U = −U0{q · q′ + γv(q · b′ + b · q′) + λvb · b′} (125)

where U0 > 0 is a typical interaction energy and λv and γv are dimensionless material

parameters. When λv = γv = 0, Eq.(125) represents the interaction energy put

forward by Maier and Saupe [95], which depends only on the uniaxial molecular

components.
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The admissible range for the parameters λv and γv is given in reference [97] where

it is assumed that the increment in excluded volume δU is positive definite under an

arbitrary rotation of the second molecule with respect to the first one.

Using the Mean Field approach employed by Straley [101], the two independent

tensors Q and B are defined as the ensemble averages < q > and < b > respectively.

In the common, fixed eigen-frame of Q and B, the molecular axes (m,n,k), in terms

of the Euler angles (α, β, γ), are given by Eq.(??) and the corresponding excluded

volume potential of a molecule, in the mean field described by Q and B, is given by

U = −Uv{Q · q + γv(Q · b + B · q) + λvB · b} (126)

In our study, we consider a simplified version of the intermolecular potential (Eq.

126), which is given as follows:

U = −U0{M : mm + γ(M · nn + N ·mm) + λN · nn} (127)

where M and N are the ensemble averages < mm > and < nn > respectively. The

axes (m,n,k) are related to the an orthonormal basis n1,2,3 through Eq. (112). The

material parameters in the two models are related as

γ =
2(γv + λv)

1 + 2γv + λv
, λ =

4λv
1 + 2γv + λv

,U0 = Uv(1 + 2γv + λv) (128)

Rewriting Eq.(127) as

U = −U0{< mamb > mamb + γ(< mamb > nanb+ < nanb > mamb)

+λ < nanb > nanb}
(129)

and using Eq.(112) in Section 3.1.3 for the euler angle expression for m and n, and

finally rewriting them using Wigner functions (DL
mn), we arrive at the series expansion

for the excluded volume as follows
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U = A1(t)D2
00 + A2(t)(D2

20 +D2
−20) + A3(t)(D2

02 +D2
0−2) + A4(t)(D2

22 +D2
2−2+

D2
−22 +D2

−2−2) + A12(t)(D2
−20 −D2

20) + A13(t)(D2
−10 −D2

10) + A23(t)(D2
−10+

D2
10) +B12(t)(D2

−2−2 −D2
22 +D2

−22 −D2
2−2) +B13(t)(D2

−12 −D2
1−2 −D2

12+

D2
−1−2)

(130)

where the time-dependent coefficients Ai(t), Aij(t)Bij(t) are given in I. Note that the

wigner functions are of the order L = 2. This is because the potential U is a second

order polynomial of the trigonometric functions of the euler angles.

3.2.2. Rotational Diffusion Operator: L∗ · (DrLµf). Rotational diffusion

equation ([105, 58, 104, 103, 59, 87]) has proved to be very useful for interpreting

experimental spectroscopic data on molecules in isotropic [87] and uniaxial liquid

crystalline phases [59, 60]. Techniques based on 2nd-rank molecular properties such

as ESR [59], NMR [60, 61] and fluorescence depolarization [62, 63] and first-rank

properties such as IR [57] and dielectric relaxation [64] have been used. Molecular

reorientation is characterized in the model by a 2nd-rank diffusion matrix that is

commonly assumed to be diagonal in the molecular frame.The 3 diffusion components

Dii in this frame quantify the ease of reorientation around the three axes.

Rod-like polymers do two kinds of Brownian motion, translation and rotation. The

translational brownian motion is the random motion of the position vector R of the

center of mass and the rotational Brownian motion is the random motion of the unit

vector u which is parallel to the polymer.

To visualize the rotational Brownian motion we imagine the trajectory of u(t), which

is on the surface of the sphere |u| = 1 (Figure 3.2)

For short times, the random motion of u(t) can be regarded as Brownian motion on

a 2−D flat surface, and the mean square displacement of u(t) in time t is written as
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Figure 3.2. Rotational Diffusion

< (u(t)− u(0))2 >= 4Dr t (forDr t� 1) (131)

Dr is the rotational diffusion constant. Note that the dimension of Dr is (time)(−1),

and is not the same as that of the translational diffusion constant, ((length)2/time).

Eq.(131) is correct only for Dr � 1. For the general case, readers are referred to

Section 3.1.3.

We project the rotational diffusion operator (Eq.(119) derived in Section 3.1.3) onto

the space spanned by the wigner rotation matrices and write the result in terms of a

series expansion.

In the absence of external flow field, the probability density function (f) of a molecule

undergoing rotational diffusion in an anisotropic potential U(α, β, γ), evolves in time,

according to the differential equation (refer Eq.(119))

∂f/∂t = L∗ ·Dr · Lµf

= Γ̂f
(132)

where L = (Ln, Lk, Lm) is a dimensionless angular momentum operator, Dr is the dif-

fusion tensor and Γ̂ is the rotational diffusion operator. If we choose the molecule-fixed
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frame of reference, then Dr is a diagonal matrix; D = diag(Dn, Dk, Dm). Writing D

in a more convenient form as

Dr = −ρ


1 + ε 0 0

0 1− ε 0

0 0 η

 (133)

where ρ = 1
2
(Dn +Dk), ε = Dn−Dk

Dn+Dk
, η = 2Dm

Dn+Dk

The diffusion operator Γ̂ is

Γ̂ = −ρ{(1 + ε)(L2
n +Ln(LnU)) + (1− ε)(L2

k +Lk(LkU)) + η(L2
m +Lm(LmU))} (134)

Using the following relations:

L± = Ln ± ιLk

∇2 = L2
n + L2

k + ηL2
m

(135)

we arrive at

Γ̂ = −ρ[∇2 +∇2U0 + ε
2
(L2

+ + L2
− + L2

+U0 + L2
−U0 + (L+U0)L+ + (L−U0)L−)+

1
2
((L+U0)L− + (L−U0)L+) + η(LmU0)Lm]f

(136)

The pdf is written in terms of the rotation wigner matrices, i.e.

f = ΣL′ ,m′ ,n′CL′ ,m′ ,n′ (t)DL′ ,m′ ,n′ ) (137)

and using the Coupling-Rule (Eq.21) in Section 2.2.1 for the product of two wigner

matrices, we get the following expansion. Note that the expansion of each terms of

Eq. 136 in given in Appendix A.
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−1

ρ

∂CL′,m′,n′(t)

∂t
= { [L′(L′ + 1) + (η − 1)n′2]CL′,m′,n′(t) +

ε

2
sn+1sn+2CL′,m′,n′+2(t)

+
ε

2
sn−1sn2CL′,m′,n′−2(t)+∑L′+2

L=|L′−2|

√
2L+1
2L′+1

{ CL,m′,n′(t){C(2, L, L′, 0,m)P1(sn−1C(2, L, L′, 1, n′ − 1) + sn+1

C(2, L, L′,−1, n′ + 1)) +D1C(2, L, L′, 0,m)C(2, L, L′, 0, n)} +

CL,m′−2,n′(t){C(2, L, L′, 2,m′ − 2)P4a(sn−1C(2, L, L′, 1, n′ − 1) + sn+1

C(2, L, L′,−1, n′ + 1)) +D2aC(2, L, L′, 2,m′ − 2)C(2, L, L′, 0, n′)} +

CL,m′+2,n′(t){C(2, L, L′,−2,m′ + 2)P4b(sn−1C(2, L, L′, 1, n′ − 1) + sn+1

C(2, L, L′,−1, n′ + 1)) +D2bC(2, L, L′,−2,m′ + 2)C(2, L, L′, 0, n′)} +

CL,m′−2,n′−2(t)C(2, L, L′, 2,m′ − 2)(P2asn−2C(2, L, L′, 1, n′ − 1) + (D4a + 2(n′ − 2)

η(A4 −B12))C(2, L, L′, 2, n′ − 2)) +

CL,m′−2,n′+2(t)C(2, L, L′, 2,m′ − 2)(P2asn+2C(2, L, j,−1, n′ + 1) + (D4a − 2(n′ + 2)

η(A4 +B12))C(2, L, L′,−2, n′ + 2)) +

CL,m′+2,n′−2(t)C(2, L, L′,−2,m′ + 2)(P2bsn−2C(2, L, L′, 1, n′ − 1) + (D4b + 2(n′ − 2)

η(A4 +B12))C(2, L, L′, 2, n′ − 2)) +

CL,m′+2,n′+2(t)C(2, L, L′,−2,m′ + 2)(P2bsn+2C(2, L, L′,−1, n′ + 1) + (D4b−

2(n′ + 2)η(A4 −B12))C(2, L, j,−2, n′ + 2)) +

CL,m′,n′−2(t)C(2, L, L′, 0,m′)(P3sn−2C(2, L, L′, 1, n′ − 1) + (D3 + 2(n′ − 2)ηA3)

C(2, L, L′, 2, n′ − 2)) +

CL,m′,n′+2(t)C(2, L, L′, 0,m′)(P3sn+2C(2, L, L′,−1, n′ + 1) + (D3 − 2(n′ + 2)ηA3)

C(2, L, L′,−2, n′ + 2)) +

CL,m′−1,n′(t)C(2, L, L′, 1,m′ − 1)P7(sn−1C(2, L, L′, 1, n′ − 1) + sn+1

C(2, L, L′,−1, n′ + 1) + 2
√

6C(2, L, L′, 0, n′)) +

CL,m′+1,n′(t)C(2, L, L′,−1,m′ + 1)P8(sn−1C(2, L, L′, 1, n′ − 1) + sn+1

C(2, L, L′,−1, n′ + 1) + 2
√

6C(2, L, L′, 0, n′)) +

CL,m′−1,n′−2(t)C(2, L, L′, 1,m′ − 1)(P5sn−2C(2, L, L′, 1, n′ − 1) + (D5 − 2ηB13

(n′ − 2))C(2, L, L′, 2, n′ − 2)) +
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CL,m′+1,n′+2(t)C(2, L, L′,−1,m′ + 1)(P6sn+2C(2, L, L′,−1, n′ + 1) + (D6+

2ηB13(n′ + 2))C(2, L, L′,−2, n′ + 2)) +

CL,m′−1,n′+2(t)C(2, L, L′, 1,m′ − 1)(P5sn+2C(2, L, L′,−1, n′ + 1) + (D5−

2ηB13(n′ + 2))C(2, L, L′,−2, n′ + 2)) +

CL,m′+1,n′−2(t)C(2, L, L′,−1,m′ + 1)(P6sn−2C(2, L, L′, 1, n′ − 1) + (D6+

2ηB13(n′ − 2))C(2, L, L′, 2, n′ − 2))}

(138)

where sn−1 =
√
L′(L′ + 1)− n′(n′ − 1) sn+1 =

√
L′(L′ + 1)− n′(n′ + 1)

sn−2 =
√
L′(L′ + 1)− (n′ − 1)(n′ − 2) sn+2 =

√
L′(L′ + 1)− (n′ + 1)(n′ + 2)

Time dependent coefficients involved in the above equation are given in Appendix A.

3.2.3. Flow Term: L∗ · (gf). The flow operator is projected onto the space

spanned by Wigner rotation matrices in a similar fashion as discussed in the previous

section.

L∗ · (gf) = −{Lm(gmf) + Ln(gnf) + Ln(gnf)} (139)

Since the shear flow matrix has the form given in Eq.(122), the components of the

flow vector (−→g ) are as follows:

gm =
ν

b2 + c2
(b2k1n2 − c2n1k2) (140)

gn =
ν

a2 + c2
(c2m1k2 − a2k1m2) (141)

gk =
ν

a2 + b2
(a2n1m2 − b2m1n2) (142)

The euler angle expression for (m,n,k) are given in Eq.(112). These expression are

expanded in terms of the Wigner matrices, to arrive at the wigner function expansion

of the (−→g ):
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gm = ν[−1
2
D1

00 − 1
4
b2−c2
b2+c2

(D2
22 +D2

−2−2 −D2
2−2 −D2

−22)]

gn = ν[ 1
2
√

2
(D1

01 −D1
0−1) + 1

4
c2−a2

c2+a2D
2
−2−1 +D2

2−1 −D2
21 −D2

−21)]

gk = ν[ 1
2
√

2
(D1

01 −D1
0−1) + 1

4
c2−a2

c2+a2 (D2
−2−1 +D2

2−1 −D2
21 −D2

−21)]

(143)

Using the relations ( 135), we arrive at the final form of the flow operator:

L∗ · (gf) = Lm[( ν
r2c+r2b

)(− r2c+r2b
2

D1
00 +

r2c−r2b
4

(D2
2−2 + D2

−22 −D2
22 −D2

−2−2) )]f +

ν
8
(L+ + L−)[ r

2
c−1
r2c+1

(D2
−2−1 + D2

2−1 −D2
21 −D2

−21)]f + ν
8
(L+ − L−)

[
1−r2b
1+r2b

(D2
21 + D2

−2−1 −D2
2−1 −D2

−21)]f − ν
2
√

2
[L+D1

0−1 − L−D1
01]f

(144)

= Lm[−ν
2
D1

00 + ναcb
4

(D2
2−2 + D2

−22 −D2
22 −D2

−2−2) ]f + ν
8
L+[ηc+b

(D2
21 −D2

2−1) + ηc−b(D
2
−21 −D2

−2−1)]f + ν
8
L−[ηc−b(D

2
21 −D2

2−1) + ηc+b

(D2
−21 −D2

−2−1)]f − ν
2
√

2
[L+D1

0−1 − L−D1
01]f

(145)

where αcb =
r2c−r2b
r2c+r2b

, ηc±b = (1−r2c )
(1+r2c )

± (1−r2b )

(1+r2b )
rb = b

a
, rc = c

a

Complete expansion of flow term is given as follows: (Details are given in Appendix

A)
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∂CL′ ,m′ ,n′ (t)

∂t
= ν

2

∑L
′
+1

L=|L′−1|

√
2L+1
2L′+1

CL,m′,n′(t)C(1, L, L′, 0,m′){
√

L′(L′+1)−n′(n′+1)
2

C(1, L, L′, 1, n′) + n′C(1, L, L′, 0, n′)−
√

L′(L′+1)−n′(n′−1)
2

C(1, L, L′,−1, n′)}+∑L
′
+2

L=|L′−2|

√
2L+ 1

2L′ + 1
{ νηc+b

8

√
L′(L′ + 1)− n′(n′ − 1)C(2, L, L′, 2,m′ − 2) {

C(2, L, L′, 1, n′ − 2)CL,m′−2,n′−2(t)− C(2, L, L′,−1, n′)CL,m′−2,n′(t)}+
νηc−b

8

√
L′(L′ + 1)− n′(n′ − 1)C(2, L, L′,−2,m′ + 2) { C(2, L, L′, 1, n′ − 2)

CL,m′+2,n′−2(t)− C(2, L, L′,−1, n′)CL,m′+2,n′(t)}+
νηc−b

8

√
L′(L′ + 1)− n′(n′ + 1)C(2, L, L′, 2,m′ − 2) { C(2, L, L′, 1, n′)CL,m′−2,n′(t)

−C(2, L, L′,−1, n′ + 2)CL,m′−2,n′+2(t)}+
νηc+b

8

√
L′(L′ + 1)− n′(n′ + 1)C(2, L, L′,−2,m′ + 2) { C(2, L, L′, 1, n′)CL,m′+2,n′(t)

−C(2, L, L′,−1, n′ + 2)CL,m′+2,n′+2(t)}+
αcb
4
n′C(2, L, L′, 2,m′ − 2){C(2, L, L′,−2, n′ + 2)CL,m′−2,n′+2(t)− C(2, L, L′, 2, n)

CL,m′−2,n′−2(t)}+ αcb
4
n′C(2, L, L′,−2,m′ + 2){C(2, L, L′, 2, n′ − 2)CL,m′+2,n′−2(t)

−C(2, L, L′,−2, n′ + 2)CL,m′+2,n′+2(t)} }
(146)
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Chapter 4

Steady State Uniaxial Case

In this chapter, we show how to solve the Smoluchowski equation for solutions of

rigid nematic polymers and suspensions under imposed elongational flow, magnetic

or electric fields, respectively. Under the three imposed fields, we show that (1) the

Smoluchowski equation can be cast into a generic form, (2) the external field must

parallel to one of the eigenvectors of the second moment tensor in steady states, and

(3) the steady state solution of the Smoluchowski equation (probability density func-

tion or simply pdf) is of the Boltzmann type parameterized by material parameters

and two order parameters governed by two algebraic-integral equations. Then, we

present a complete bifurcation diagram of the order parameters with respect to the

material parameters by solving the algebraic-integral equations. The stability of the

pdf solutions is inferred from the minimum of the free energy density. The solution

method is extended to dilute solutions of dipolar, rigid nematic polymers under im-

posed electric field. The first moment of the steady state pdf is shown to parallel to

the external field direction at sufficiently strong permanent dipole or relatively weak

dipole-dipole interaction. In this case, the solution of the Smoluchowski equation is

parameterized by one order parameter and material parameters in the Boltzmann

form. Otherwise, the first moment is not necessarily parallel to the external field

direction.

The chapter is organized as follows. In Section 4.1, we describe the well known kinetic

theory and derive and solve the two implicit equations in order to find the steady state

solutions of rigid nematic uniaxial lcps. Also, we state and proof an important result,
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necessary for our solution procedure. In Section 4.2, we extend our study to a dilute

solution of rigid nematic polymers.

4.1. Steady states under an imposed elongational flow,

electric or magnetic field

We adopt the extended Doi-Hess model for solutions of rigid nematic polymers [85,

111, 112, 113, 114] with the well-known Maier-Saupe excluded volume potential

Vi(m,x, t) = −3NkT

2
〈mm〉 : mm (147)

where N is the dimensionless number density of the nematic polymer, m is a unit

vector for the axis of symmetry of the molecule, which is modeled as a spheroid,

〈mm〉 =
∫
‖m‖=1

mmf(m, t)dm is the second moment of m with respect to the prob-

ability density function f(m, t) [85, 113]. When the molecule (or nematic particle

in the case of suspensions) is under an imposed electric or magnetic field, an induced

dipole or magnetic moment in the molecule will occur even though it does not have an

intrinsic dipole (non dipolar) or magnetic moment (non ferromagnetic). The potential

due to the external field effect is given by the potential.

VH = −χα
2

(H ·m)2, VE = −α
2

(E ·m)2 (148)

respectively, where H is the magnetic field vector, and χα is the difference of the

susceptibility parallel and perpendicular to the molecular direction; E is the electric

field, and α is the difference between the polarizability parallel and perpendicular to

the molecular direction. We note that, in this formulation, the mean-field dipole-

dipole interaction due to the induced dipole is not accounted for.

The transport equation for the probability distribution function of the molecular

orientation in monodomains is given by the Smoluchowski equation:
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df
dt

= R · [DrfRµt]−R · [m× ṁf ],

ṁ = W ·m + a[D ·m−D : mmm]

(149)

where Dr is the rotary diffusivity (here it is assumed a constant), R = m× ∂
∂m

is the

rotational gradient operator, and d
dt

(•) denotes the material derivative: ∂
∂t

(·)+v·∇(·),

D and W are the rate of strain tensor and vorticity tensor, respectively; a is a

geometry or shape parameter defined by a = r2−1
r2+1

with the molecular aspect ratio

r. µ = lnf + 1
kT
Vi is the normalized chemical potential and µt = µ + 1

kT
VH or

µt = µ + 1
kT
VE is the extended chemical potential including the normalized external

potential , respectively.

For an elongational flow field stretching (γ > 0, uniaxial elongation) or compressing

(γ < 0, biaxial elongation) in the direction of e3, the velocity field is given by

v = −γ
2

(xe1 + ye2) + γze3 (150)

It can be cast in the form of a potential effectively [116],

Ve = −3aγ

4
kTe3e3 : mm (151)

In fact,

−m× ṁ =
1

kT
RVe (152)

since W = 0 in elongational flow fields. Therefore, the rotary convective term in

the Smoluchowski equation can be absorbed into the extended chemical potential in

Eq.(215).

Now that the external potentials for the elongational flow, magnetic and electric

field are identical in form, we next illustrate the solution method for Smoluchowski
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equation in the case of the elongational flow field only in the following. In this case,

the Smoluchowski equation is rewritten in the form

df

dt
= R · [Dr(a)fRµt] (153)

where µt = lnf + 1
kT

(Vi + Ve). The steady state solution of the equation is given by

µt = C (154)

leading to

f =
1

Z
e−

1
kT

(Vi+Ve), (155)

where Z is the normalizing constant to ensure 〈1〉 = 1. We denote

ν =
aγ

2
(156)

and name it the effective Peclet number. Then, the total potential is given by

V = Vi + Ve = −3kT

2
[N〈mm〉+ νe3e3] : mm (157)

We adopt a general representation of the second moment 〈mm〉

〈mm〉 = s(nn− I/3) + β(n⊥n⊥ − I/3) +
I

3
, (158)

where s and β are two order parameters and n and n⊥ are two eigenvectors of 〈mm〉

[115]. It follows from Eq.(158) that

s = 2〈(n ·m)2〉+ 〈(n⊥ ·m)2〉 − 1,

β = 〈(n ·m)2〉+ 2〈(n⊥ ·m)2〉 − 1

(159)

If we parameterize the vector m relative to the orthonormal frame (n,n⊥,n
∗) as

follows
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m = cos θn + sin θ cosφn⊥ + sin θ sinφn∗ (160)

where n∗ is the third orthonormal eigenvector of M besides n and n⊥, and set e3 = n,

then

f =
1

Z
e

3N
2

[(s−β
2

)(cos2 θ−1/3)+β
2

sin2 θ cos 2φ]+ 3ν
2

cos2 θ (161)

with

Z = Z(s, β) =

∫
‖m‖=1

e
3N
2

[(s−β
2

)(cos2 θ− 1
3

)+β
2

sin2 θ cos 2φ]+ 3ν
2

cos2 θdm (162)

Substituting Eq.(161) into the formula of s and β, we arrive at the governing system

of equations for the order parameters implicitly,

β =
∫
‖m‖=1

sin2 θ cos 2φfdm,

s =
∫
‖m‖=1

1
2
(3 cos2 θ − 1)fdm + β

2

(163)

Using a change of variable, we rewrite the order parameters as follows

β = 4
∫ π

0

∫ 1

0
(1− z2) cos 2φfdzdφ,

= 1
Z′

∫ 1

0
(1− z2)e3/2(N(s−β/2)+ν)z2I1(ζ)dz,

s = 4
∫ π

0

∫ 1

0
P2(z)fdz + β/2,

= 1
Z′

∫ 1

0
P2(z)e3/2(N(s−β/2)+ν)z2I0(ζ)dz + β/2,

f = 1
Z′
e

3N
2

[(s−β
2

)z2+β
2

(1−z2) cos 2φ]+ 3ν
2
z2

(164)

where
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Z ′(s, β) =

∫ 1

0

e
3
2

(N(s−β/2)+ν)z2I0(ζ)dz (165)

P2(z) = 1
2
(3z2− 1) is the second order Legendre polynomial, and ζ = 3Nβ

4
(1− z2). In

the above, we used the definition for the modified Bessel function of the first kind:

πIn(z) =

∫ π

0

ez cosφ cosnφdφ, n = 0, · · · ,∞ (166)

Noticing that β = 0 is a solution of Eq.(163), we deduce the implicit equation gov-

erning the uniaxial order parameter s:

s =
∫
‖m‖=1

1
2
(3 cos2 θ − 1) 1

Z(s,0)
e

3N s
2

(cos2 θ−1/3)+ 3ν
2

cos2 θfdm

=
∫ 1

0
P2(z)e

3
2

(N s+ν)z2dz/(
∫ 1

0
e

3
2

(N s+ν)z2dz)

(167)

The free energy density of the nematic polymer system is given by

A[f ] =

∫
‖m‖=1

[kT ln f +
Vi
2

+ Ve]fdm (168)

From equation (155), we arrive at the free energy density at equilibrium:

A[f ] =
∫
‖m‖=1

[−kT lnZ − Vi
2

]fdm

= −kT [lnZ − N
2

(s2 − sβ + β2)]

(169)

This formula will be used to infer the stability of the steady states. The stable steady

state is the global minimum of the free energy density. The metastable equilibrium

is a local minimum of the free energy, but not the global one.

4.1.1. Reduced symmetry. It is known that the Smoluchowski equation is

invariant under the rotational transformation in SO3 when flows and external field

effects are absent [117]. Namely,
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d

dt
f = Rn ·Dr[fRnµ] (170)

where Rn = n × ∂
∂n

, n = U ·m for any U ∈ SO3. With the imposed elongational

flow of axis of symmetry e3, we denote the rotational group in the plane transverse to

the axis by SO2 = {U|U ∈ SO3,U · e3 = e3}. Then, from the invariant property of

the Smoluchowski equation, we deduce equation (215) is invariant under SO2 since

µt = −3NkT

2
mm : 〈mm〉 − 3νkT

2
e3e3 : mm = −3NkT

2
nn : 〈nn〉 − 3νkT

2
e3e3 : nn

(171)

for n = U · m, where U ∈ SO2. i.e., there exists a reduced symmetry in the

Smoluchowski equation under the imposed field in the plane orthogonal to the field.

Namely, if there exists a pdf solution of the Smoluchowski equation, there exists a

family of pdf solutions parameterized by SO2.

In the extended Doi-Hess kinetic theory, the geometric parameter a can be exploited

to model both rodlike (a > 0) and disklike (a < 0) molecules. Effectively, it is the

effective Peclet number that matters in the steady state solution. When molecules

are disklike, an uniaxial elongational flow (γ > 0) is effectively equivalent to a biaxial

elongational flow of rodlike nematic polymers since they share the same effective

Peclet number and vice versa. Given the asymmetric correspondence between the

rodlike and disklike molecules in biaxial and uniaxial elongation, we will focus on

the rodlike nematic polymer in the following (a > 0). The steady states of disklike

nematic polymers can be obtained from the correspondence principle.

4.1.2. Uniaxial elongation. Stretching or uniaxial elongation for rodlike ne-

matic polymers corresponds to ν > 0. The steady state solutions consist of up to

three uniaxial steady states with their uniaxial directors aligned in the direction of

the flow and a family of biaxial solutions at sufficiently high polymer concentration
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parameterized by SO2. The bifurcation diagram of the uniaxial steady states with

respect to the dimensionless concentration has been documented in [115]: there are

up to two stable prolate steady states at small Peclet number regime limited to a

small window of nematic polymer concentration and there is only one in the regime

of large Peclet numbers. The highly aligned nematic steady state is always stable.

When two stable prolate steady states coexist in a window of small Peclet numbers

and nematic polymer concentrations the lesser aligned one is metastable. Figure 4.1

depicts the uniaxial steady state solutions in the phase space (N, s) with ν = -0.1,

-0.01, 0, 0.01, 0.1 respectively.

The biaxial steady states emerged at sufficiently high concentration represent the

entire nematic equilibrium family (absent of flows) parameterized by SO2 with their

major directors aligned in the plane perpendicular to the direction of elongation.

However, these biaxial steady solutions are unstable. Figure 4.2 depicts all uniax-

ial steady states and a pair of biaxial steady state families with their major axes

perpendicular to each other in the plane orthogonal to the direction of elongation.

4.1.3. Biaxial elongation. When nematic polymers are in biaxial elongation,

ν < 0, there exist up to three uniaxial steady states with their uniaxial directors

aligned in the axis of the flow symmetry. At small concentration, the only uniaxial

steady state is the oblate one; whereas there are two more prolate uniaxial steady

states at sufficiently high concentration. At high enough concentration, a family of

biaxial steady states parameterized by SO2 emerges. At low concentration, the only

stable steady state is the oblate uniaxial one. At sufficiently high concentration, a

family of biaxial steady state parameterized by SO2 is stable. The stable biaxial

steady state is deformed from the prolate uniaxial equilibrium (ν = 0) with their

uniaxial director aligned in the plane orthogonal to the flow direction. Again, bi-

stability may take place in the regime of small Peclet numbers for a limited range of
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Figure 4.1. Phase bifurcation diagram for the steady state uniaxial
order parameter at ν = -0.1,-0.01, 0,0.01,0.1 respectively. A bi-stability
region exists for small magnitude Peclet numbers and in a small window
of nematic polymer concentrations near the critical concentration N=5.
If ν > 0, the highly aligned prolate state (s > 0) is stable while the
less aligned prolate steady state is metastable; whereas the oblate state
(s < 0) is stable up to a certain critical concentration if ν < 0. The
thick curves represent the stable branches while the thin curves depict
the unstable ones.

concentration. Figure 4.3 depicts a representative bifurcation diagram for all steady

states as functions of the Peclet number and dimensionless concentration, respectively.

We have obtained solutions of the Smoluchowski equation semi-analytically by as-

suming the imposed field parallels to one of the eigenvector direction of the second

moment tensor. Next, we show that this is a fact.

To prove it, we note that the imposed field direction can be parameterized in the

frame of n,n⊥,n
∗ as follows:
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Figure 4.2. Phase bifurcation diagram for all the steady state order
parameters in uniaxial elongation. The stable solutions are uniaxial
prolate ones (s > 0, β = 0) of highly aligned and the less aligned. The
biaxial states form a family of solutions parameterized by the rotational
group SO2, which are unstable. The Peclet number here is ν = 0.01.
The thick curves depict the stable branches while the thin curves show
the unstable ones.

Figure 4.3. The phase bifurcation diagram for all the steady state
order parameters in biaxial elongation. The stable solution is the oblate
(s < 0, β = 0) one up to a critical concentration and then assumed by
a family of biaxial solutions (s 6= 0, β 6= 0). The bistability region may
exist in a small window of nematic polymer concentrations at small
Peclet number regimes. The Peclet number here is ν = −0.01. The
thick curves depict the stable branches while the thin curves show the
unstable ones.

e3 = cos θ′n + sin θ′ cosφ′n⊥ + sin θ′ sinφ′n∗ (172)

where θ′, φ′ are constants. So,
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e3 ·m = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′) (173)

The pdf solution of the Smoluchowski equation is given by

f =
1

Z
e

3N
2

[(s−β
2

)(cos2 θ−1/3)+β
2

sin2 θ cos 2φ]+ 3ν
2

(cos θ cos θ′+sin θ sin θ′ cos(φ−φ′))2] (174)

where Z is the normalizing constant. From the definition of the second moment

equation, we arrive at three additional identities

n ·M · n⊥ = 0,n ·M · n∗ = 0,n⊥ ·M · n∗ = 0 (175)

where M = 〈mm〉. Next, we show that either θ′ = 0 or θ′ = π/2 together with φ′ = 0

or φ′ = π/2. This is equivalent to say that e3 is in one of the eigenvector directions

of the second moment tensor M.

It follows from Eq.(175)

〈cos θ sin θ cos(φ− φ′)〉 = 0 (176)

for any values of φ′. We define

F (λ) =

∫
‖m‖=1

cos θ sin θ cos(φ− φ′)eh/Zdm (177)

where

h(λ) = 3N
2

[(s− β
2
)(cos2 θ − 1/3) + β

2
sin2 θ cos 2φ] + 3ν

2
((cos θ cos θ′)2+

(sin θ sin θ′ cos(φ− φ′))2 + 2λ cos θ cos θ′ sin θ sin θ′ cos(φ− φ′))]

(178)

We note that Eq.(176) implies
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F (1) = 0 (179)

Since the integrand in the integral of F (0) is an analytical function of sin2 θ multiplied

by cos θ which is an odd function about θ = π/2, it can be easily shown to be zero.

However,

F ′(λ) = const×
∫
‖m‖=1

sin 2θ′ sin2 2θ cos2(φ− φ′)eh/Zdm 6= 0 (180)

provided

sin 2θ′ 6= 0. (181)

This contradicts the fact that F (0) = F (1) = 0 if (181) were true. Thus

θ′ = 0, π/2. (182)

In the case of θ′ = π/2, we define

G(λ) =

∫
‖m‖=1

sin2 θ cosφ sinφeg/Zdm (183)

where

g = 3N
2

[(s− β
2
)(cos2 θ − 1/3) + β

2
sin2 θ cos 2φ] + 3ν

2
sin2 θ(cos2 φ cos2 φ′+

sin2 φ sin2 φ′ + 2λ sinφ cosφ sinφ′ cosφ′)]

(184)

We recall that Eq.(175) implies G(1) = 0. At λ = 0, the integrand is given by an

exponential function of cos 2φ multiplied by sin 2φ. The integral in φ over [0, 2π] is

therefore equal to zero. i.e.,

G(0) = 0 (185)

Then, using the same argument, we arrive at

90



www.manaraa.com

G′(λ) = const× sin 2φ′
∫
‖m‖=1

sin4 θ sin2 2φeg/Zdm 6= 0 (186)

provided sin 2φ′ 6= 0. This contradicts to G(0) = G(1) = 0 if it were true. Hence,

φ′ = 0, π/2. We then conclude that e3 must be in one of the principal axes or

eigenvector directions of the second moment tensor M.

Theorem 4.1.1. When the Smoluchowski equation with the Maier-Saupe excluded

volume potential is driven under an imposed magnetic, or electric field, or an elon-

gational flow field, one of the principal axes of the second moment of the steady state

probability density function solution must parallel to the imposed field direction.

4.2. Effect of an imposed electric field on dilute solution

of nematic polymers

We consider dilute solution of dipolar, rigid nematic polymers or suspensions, where

the excluded volume effect is neglected. When the electric field is applied, the total

potential consisting of the intermolecular (dipole-dipole) and external electric poten-

tial is given by

U = −α〈m〉 ·m− µE ·m− α0

2
EE : mm (187)

where α0 is the difference of the polarizability parallel and perpendicular to m, µ

is the strength of the permanent dipole and α is the strength of the intermolecular

dipole-dipole interaction potential.

We set

〈m〉 = s1q1, ‖q1‖ = 1 (188)

where
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s1 = 〈(q1 ·m)〉 (189)

is an order parameter describing the averaged molecular orientation about the direc-

tion q1. We extend q1 into an orthonormal basis q1, q2 and q3 and parameterize m

and E with respect to the basis:

m = cos θq1 + sin θ cosφq2 + sin θ sinφq3,

E = cos θ′q1 + sin θ′ cosφ′q2 + sin θ′ sinφ′q3

(190)

Assuming E||q1, we arrive at

f = 1
Z
e

1
kT

[(αs1+µE) cos θ+
α0
2
E2 cos2 θ],

s1 = 〈cos θ〉 =
∫ 1

−1
ze

1
kT

[(αs1+µE)z+
α0
2
E2z2]dz/Z,

Z =
∫ 1

−1
e

1
kT

[(αs1+µE)z+
α0
2
E2z2]dz.

(191)

Figure 4.4 depicts the bifurcation diagram in the phase space (s1, α, E) at selected

values of µ, α0. The stable branch is identified by examining the free energy density

A =

∫
‖m‖=1

kT (flnf)− [
α

2
〈m〉 ·m + µm · E +

α0

2
EE : mm]fdm = [

α

2
s2

1 − kT lnZ]

(192)

At zero electric field strength, the order parameter goes through a second order phase

transition as α increases. The critical concentration is α∗ = 3. When the electric field

is applied, the symmetric phase diagram is broken so that a single branch of positive

(negative) s1 forms for all values of α and positive (negative) values of E and two

branches of the order parameter s1 of negative (positive) values emerge through a

saddle node bifurcation. The single branch order parameter is stable, indicating that

the averaged molecular orientation favors the direction of the external field.
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Figure 4.4. Phase bifurcation diagram for the steady state uniaxial
order parameter s1 as functions of α. The parameter values are kT =1,
α0=0.2, µ=0.1, E=-0.1,0,0.1. The steady state bifurcation diagram is
symmetric about s1 = 0 and occurs at αc = 3. When E > 0, the
symmetry is broken in such a way that a stable and positive order
parameter exists for all α > 0 while a pair of negative order parameters
emerge at sufficiently large values of α. Whereas E < 0, a stable
negative order parameter persists for all α > 0 while a pair of positive
order parameters emerge at sufficiently large values of α. This indicates
that nematic polymers incline to orient in the direction of the externally
imposed electric field. The thick curves depict the stable branches while
the thin curves show the unstable ones.

We next show that q1 must parallel to E under certain conditions, i.e. the orienta-

tional axis of the first moment is dictated by the external field. From the parametriza-

tion of the electric field, we have

f =
1

Z
e

1
kT

[(αs1) cos θ+µE(cos θ cos θ′+sin θ sin θ′ cos(φ−φ′))+α0
2
E2(cos θ cos θ′+sin θ sin θ′ cos(φ−φ′))2]

(193)
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where Z is the normalizing constant. The other conditions that we can use are

q2 · 〈m〉 = q3 · 〈m〉 = 0 (194)

This translates to

〈sin θ sinφ〉 = 〈sin θ cosφ〉 = 0. (195)

It follows from (195) that

〈sin θ cos(φ− φ̃)〉 = 0. (196)

for any values of φ̃.

Theorem 4.2.1. When the solution of dipolar, rigid nematic polymers is driven by an

imposed electric field, the first moment of the steady state probability density function

must be parallel to the external field direction provided |µ| ≥ |α0E|.

Proof. We first assume s1 6= 0 since the first moment is zero vector otherwise.

We set φ̃ = φ′ in (196) and define

H =

∫
‖m‖=1

sin θ cos(φ− φ′)eψdm (197)

where

ψ = 1
kT

[(αs1) cos θ + µE(cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′))+

α0

2
E2(cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′))2].

(198)

We denote

ψ = 1
kT

[αs1 cos θ + µE cos θ cos θ′ + α0

2
E cos2 θ cos2 θ′+

a(θ) cos(φ− φ′) + b(θ) cos2(φ− φ′)]

(199)
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where

a(θ) = (µE + α0E
2 cos θ cos θ′) sin θ sin θ′,

b(θ) = α0

2
E2 sin2 θ sin2 θ′.

(200)

Taking into account the periodicity of the trigonometric functions, we observe that

H does not depend on φ′. Without loss of generality, we set φ′ = 0. Through a series

of variable changes, we arrive at

H =
∫ π/2

0

∫ π/2
0

sin2 θ cosφe
1
kT

[
α0
2
E2 cos2 θ cos2 θ′+b(θ) cos2 φ][sinh(a(θ) cosφ/kT )

e
1
kT

[αs1 cos θ+µE cos θ cos θ′] + sinh(a(π − θ) cosφ/kT )e
−1
kT

[αs1 cos θ+µE cos θ cos θ′]]dθdφ

(201)

If |µ| ≥ |α0E|, a(θ)a(π − θ) ≥ 0. Thus, if sin θ′ 6= 0, H > 0, which contradicts to

H = 0. This implies, sin θ′ = 0. i.e., the magnetic field is parallel to the direction of

the first moment q1.

The condition on the size of the parameters in Theorem 4.2.1 is necessary for some

values of α. In fact, if |µ| < |α0E| and α is large enough, then the direction of

< m > may be different from that of E (which will be shown below by numerical

calculations ). This result can be illustrated by an intuitive physical argument. Each

polymer rod is subject to two potentials: 1) the external potential caused by the

electric field and 2) the (mutual) intermolecular potential caused by other polymer

rods in the ensemble. It is known that in the absence of the external potential, there

is an I-N phase transition caused by the dipole-dipole interaction between polymer

rods when α > 3kT [108, 109, 110]. In other words, for α > 3kT , polymer rods

tend to form a cluster with a distinguished direction (director). In the absence of

the external potential, the director of the cluster is arbitrary. In the presence of the

external potential, however, the director of the cluster is no longer arbitrary. If the

director of the cluster is not a stationary point of the external potential, then the
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cluster cannot be a steady state solution. The external potential has at least two

stationary points for any values of µ, α0,E. To continue the discussion, we need to

switch to a spherical system different from the one used above. We select the z-axis

as the direction of E and the y-axis perpendicular to the plane spanned by < m >

and E (assuming < m > and E are not parallel to each other of course) . In this

coordinate system,

E = E(0, 0, 1), < m >= (r1, 0, r3) (202)

In spherical coordinates, the external potential is given by

UExt(θ, φ) = −µE cos θ − α0

2
E2 cos2 θ = −α0E

2(
µ

α0E
cos θ +

1

2
cos2 θ) (203)

When |µ| < |α0E|, the external potential has a third stationary point, θ0, determined

by

cos(θ0) = − µ

α0E
(204)

The stationary point θ0 is between 0 and π. Therefore, the intuitive analysis indicates

that when |µ| < |α0E| and α 6= 0, there can be a steady state cluster whose director

is different from the direction of E. �

We next prove that when 0 < |µ| < |α0E|, there is a critical value α∗ such that for

α ≤ α∗, all steady state solutions satisfy that < m > is parallel to E (i.e. r1 = 0). For

α > α∗, we show numerically that there exists a steady state solution where < m >

is not parallel to E (i.e. r1 6= 0).

In the Cartesian coordinate system with the direction of E as the z-axis:
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m = (m1,m2,m3), E = E(0, 0, 1), < m >= (r1, 0, r3),

U(m) = −α r1m1 − (µE + α r3)m3 − α0

2
E2m2

3,

ρ(m) =
exp

(
1
kT

[α r1m1 + (µE + α r3)m3 + α0

2
E2m2

3]
)∫

S
exp

(
1
kT

[α r1m1 + (µE + α r3)m3 + α0

2
E2m2

3]
)
dm

.

(205)

In the spherical coordinate system:

m = (sin θ cosφ, sin θ sinφ, cos θ),

U(θ, φ) = −α r1 sin θ cosφ− (µE + α r3) cos θ − α0

2
E2 cos2 θ,

ρ(θ, φ) =
exp

(
1
kT

[α r1 sin θ cosφ+ (µE + α r3) cos θ + α0

2
E2 cos2 θ]

)∫
‖m‖=1

exp
(

1
kT

[α r1 sin θ cosφ+ (µE + α r3) cos θ + α0

2
E2 cos2 θ]

)
dm

(206)

where
∫
‖m‖=1

dm =
∫ π

0

∫ 2π

0
sin θdθdφ The nonlinear integral equations governing r1

and r3 are

r1 =
∫ π

0

∫ 2π

0
sin θ cosφ ρ(θ, φ) dφ sin θ dθ,

r3 =
∫ π

0

∫ 2π

0
cos θ ρ(θ, φ) dφ sin θ dθ.

(207)

Theorem 4.2.2. When |µ| < |α0E|, there exists a critical α∗ such that all solutions

of Eq. (207) satisfy r1 = 0 if α < α∗.

Proof. We first prove that all solutions of Eq. (207) satisfy r1 = 0 if α < kT .

We prove it by contradiction. Suppose there is a solution of (207) satisfying r1 6= 0.

In the probability density ρ(θ, φ) above, we replace r1 by r and treat it as a variable.

We consider the function
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f(r) = r− < sin θ cosφ > (208)

which satisfies

f(0) = f(r1) = 0. (209)

The derivative of ρ(θ, φ) with respect to r is

dρ(θ, φ)

dr
=

α

kT
(sin θ cosφ− < sin θ cosφ >) ρ(θ, φ) (210)

The derivative of f(r) is

df(r)

dr
= 1− α

kT
< sin θ cosφ(sin θ cosφ− < sin θ cosφ >) >

= 1− α
kT

Var(sin θ cosφ) >

 1, α ≤ 0,

1− 〈sin2 θ cos2 φ〉, 0 < α < kT,

 > 0,

(211)

where Var denotes the variance. Clearly, df
dr
> 0 when α < kT , which contradicts to

(209). Thus, the only solution for r1 is zero when α < kT . Let

α∗ = inf{α|Eq.(207) has a solution with r1 6= 0} (212)

Clearly, α∗ exists and α∗ ≥ kT . Then, r1 = 0 is the only solution if α < α∗. �

Figure 4.5 depicts the steady state solution whose director is not parallel to E. In

Figure 4.5, < m1 > (i.e. r1) and − < m3 > (i.e. −r3) are shown as functions of

α. The parameters used here are µ = 0.6kT , α0 = kT , and E = 1. For this set of

parameters α∗ ≈ 5.7226567kT .

4.2.1. Reduced symmetry. The direction of the first moment is arbitrary in

equilibrium. However, it is no longer arbitrary when the electric field is imposed.

When the first moment is parallel to the external field direction, for instance α > α∗

when |µ| < |α0E| or when |µ| > |α0E|, the solution is invariant with respect to the

rotational group SO2 defined in the previous section . Otherwise, the direction of the
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Figure 4.5. The plot of 〈m1〉 (i.e. r1) and 〈m3〉 (i.e. −r3) as func-
tions of α with kT =1. It shows the existence of the first moment that
is not parallel to any eigenvectors of the second moment.

first moment is well-defined and the pdf solution of the Smoluchowski equation may

no longer be invariant under SO2.

4.3. Conclusion

We have demonstrated the projection method for solving the Smoluchowski equation

with Maier- Saupe potential and the dipole-dipole interaction potential coupled with

external fields. The method is general and can be used to solve the Smoluchsowki

equation with any potential that is a function of the finite sum of spherical harmonic

functions plus the external potential. The solution is always of the Boltzmann type

and parameterized by a finite set of order parameters. The stability of the pdf solution

can be inferred from the free energy density function within the order parameter space.
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Chapter 5

Mono domain dynamics for rigid rod and

platelet suspensions

In Chapter 4 we provided a detailed description of the steady state solution of the

Smoluchowski equation for the molecules with uniaxial symmetry. In this chapter,

we will discuss the case of time dependent solutions of the Smoluchowski equation.

We organize our discussion as follows. In sections 5.1 and 5.2, we state and prove

the reciprocity principle of the Doi-Hess kinetic theory which provides a reduction

of the Smoluchowski equation from a 5 parameter family of coplanar linear flows

and magnetic fields to a 2 parameter target model. The target model distinguishes

planar flows with a rotational component, which map to simple shear and a transverse

magnetic field; and irrotational flows, which reduce to pure extension and a transverse

magnetic field which is equivalent to a three-dimensional biaxial extension flow.

In section 5.3, we discuss the case of rotational flows with coplanar magnetic field

where we predict transition phenomena associated with each robust class of sheared

monodomain attractors (tumbling, kayaking, and chaotic) as a magnetic field is turned

on and amplified. This numerical study of the target model requires a simple extension

of a shear kinetic code [75, 76] to a coupled transverse magnetic field.

The case for the for irrotational flows coupled with a magnetic field is described in

section 5.4. We explicitly show equilibria of the Smoluchowski equation are given

by a Boltzmann distribution parameterized by a pair of order parameters, providing

a natural extension of results on extensional flow-induced equilibria [72]. All stable
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and unstable equilibria are then explored numerically, with the result that PDFs are

generically biaxial, with principal axis either at a preferred angle in the flow-magnetic

field plane, or orthogonal to it.

Finally, in section 5.5, we provide a summary of results.

5.1. Mathematical formulation

We briefly review the mathematical formulation of the Doi-Hess kinetic theory for

homogeneous flows of rigid spheroids (rods or platelets) immersed in a viscous solvent

subject to an imposed magnetic field [120, 111, 112, 113]. We allow a general

excluded volume potential

Vi(m,x, t) = νkT

∫
‖m′‖=1

B(m,m′)f(m′,x, t)dm′, (213)

where ν is the number density of spheroids, m and m′ are unit vectors for the axes

of symmetry of a given spheroid, B(m,m′) is the excluded volume and f is the

orientational probability density function (PDF) of the ensemble of spheroids. In the

presence of an imposed magnetic field, an induced magnetic moment develops; we

assume intrinsic magnetic moments and their magnetic dipole-dipole interaction are

negligible (nonferromagnetic spheroids). For such systems, the potential due to the

external field is given by [85, 84, 118].

VH = −χα
2

(H ·m)2 (214)

where H is the magnetic field vector, and χα (normally positive for paramagnetic

materials and negative for diamagnetic materials) is the difference between the sus-

ceptibility parallel and perpendicular to the spheroid principal axis, also known as

the magnetic anisotropy.
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The rotational transport equation for the orientational PDF is given by the Smolu-

chowski equation of Doi and Hess [85, 111, 118]:

df
dt

= R · [Dr(a)fR(µ+ 1
kT
VH)]−R · [m× ṁf ],

ṁ = W ·m + a[D ·m−D : mmm],

(215)

where Dr(a) is the rotational diffusivity (assumed to be constant in this study),

R = m × ∂
∂m

is the rotational gradient operator, and d
dt

(•) denotes the material

derivative: ∂
∂t

(·) + v · ∇(·), D and W are the rate-of-strain and vorticity tensor,

respectively; a is a geometry or shape parameter defined by a = r2−1
r2+1

in terms of the

spheroidal aspect ratio r; µ = ln f + 1
kT
Vi is the normalized chemical potential.

In [73], we show the Smoluchowski equation can be rewritten into a form with a

modified Jeffery orbit equation for m containing a transport term due to magnetic

forcing:

m× (ṁ + χHH ·m) = m× {W ·m + [aD + χ(HH

−H2

k
I)] ·m− [aD + χ(HH− H2

l
I)] : mmm},

(216)

whereχ = Drχα
kT

is a normalized magnetic anisotropy, k, l can be any non zero numbers

and H = ‖H‖.

Recall the Smoluchowski equation absent of external fields is invariant under orthog-

onal transformations, which reflects orientational degeneracy of ordered equilibria feq

due to excluded volume interactions. That is, nematic equilibria have a specified

Boltzmann distribution function and unique uniaxial order parameter, but the prin-

cipal axis of orientation is arbitrary. If n = U ·m, where U is an orthogonal matrix,

then Eq.(215) leads to
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df̃

dt
= Rn · [Dr(a)f̃Rnµ̃]−Rn · [n× (ṅ + χH̃H̃ · n)f̃ ], (217)

where the pdf f̃ = f̃(n,x, t) = f(Ut · n,x, t), Rn = n× ∂
∂n

, H̃ = U ·H is the rotated

external field, and µ̃ = ln f̃ + 1
kT
Vi(n,x, t). If we denote SU(2,H) = {U|U ·H = H},

the Smoluchowski equation is invariant under SU(2,H).

5.2. Reduced target models based on reciprocity relations

We briefly recall the reduction from the Smoluchowski equation for coplanar flow and

magnetic fields to the target models [73].

Consider a linear planar flow field

v = (v11x+ v12y, v21x− v11y, 0), (218)

where vij are constants, with gradient

∇v =


v11 v12 0

v21 −v11 0

0 0 0

 , (219)

and a coplanar magnetic field H = (H1, H2, 0)T . Let

p =
1

2
(v12 + v21), q =

1

2
(v12 − v21). (220)

q 6= 0 corresponds to a rotational flow field with non-vanishing vorticity tensor. By

choosing k = l = 2 in Eq.(216), the upper left 2×2 sub-matrix qualifies as an effective

rate- of-strain tensor. Then, W = qW0 and

aD + HH− H2

2
(e1e1 + e2e2) = λUT ·D0 ·U (221)

where W0 and D0 are normalized vorticity and rate-of-strain tensors for the pure

shear velocity field v = (2y, 0, 0),
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W0 =


0 1 0

−1 0 0

0 0 0

 ,D0 =


0 1 0

1 0 0

0 0 0

 ,U =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 ,

cos 2θ =
b√

b2 + c2
, sin 2θ = − c√

b2 + c2
,

b = ap+ χH1H2, c = av11 + χ
H2

1−H2
2

2
, λ =

√
b2 + c2.

(222)

In the new configurational coordinates n = U ·m, the Smoluchowski equation takes

the form

df̃
dt

= Rn · [Dr(a)f̃Rnµ̃]−Rn · [n× (ṅ− χH2

2
e3e3 · n)f̃ ],

ṅ = W̃ · n + ã [D̃ · n− D̃ : nnn],

(223)

where W̃ = qW0, D̃ = qD0, and ã = λ/q

This transformed system Eq.(223), by comparison with Eq.(215), corresponds to a

simple shear flow with effective shear rate 2q, a modified shape parameter ã, together

with an imposed magnetic field in the direction e3 normal to the shearing plane, and

most importantly, the anisotropy −χ
2

is opposite to the original one for the same

material. The response to any coupled coplanar rotational flow and magnetic field is

now given in terms of the solution of the target kinetic model (223), which we provide

by a shear flow code extended to incorporate a transverse magnetic field component.

When q = 0, the flow is irrotational, i.e., the vorticity tensor is zero. Here, we can

choose
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cos 2θ =
c√

b2 + c2
, sin 2θ =

b√
b2 + c2

(224)

so that the rate of strain tensor is transformed into a diagonal form λD1, where

D1 =


1 0 0

0 −1 0

0 0 0

 (225)

Now, the corresponding flow is a planar extension or elongation

v = λ(x,−y, 0) (226)

which is a potential flow with the corresponding normalized potential given by

Ve = − aλ

2Dr

D1 : mm (227)

The problem can be written in terms of a scalar potential with the total normalized

potential given by

V = −3N

2
M : mm− aλ

2Dr

D1 : mm +
χ

4Dr

H2e3e3 : mm (228)

The Smoluchowski equation is simplified to

d

dt
f = R ·Dr(Rf +RV f) (229)

Thus, steady states are given by a Boltzmann distribution [72],

f(m) =
1

Z
e−V (230)

The proof of the above result can be found in Appendix. In addition, in steady states,

the ensemble averaged torque vanishes

〈RV 〉 = 0 (231)

105



www.manaraa.com

which is equivalent to

εijk(
aλ

2Dr

D1 −
χH2

4Dr

e3e3)il ·Mlj = 0 (232)

This in turn implies

M12 = M13 = M23 = 0 (233)

if aλ 6= −χH2

2
. If aλ = −χH2

2
, M12 = M23 = 0; if aλ = χ

2
, M12 = M13 = 0. In these

latter cases, it can be shown M is diagonal [?]. Thus, the principal axes of the rate

of strain tensor coincide with those of the second moment tensor and both share the

external field direction e3 as a principal axis.

The total potential can be recast into

V = −3N

2
M : mm− 1

2
Dex : mm + const (234)

where

Dex =
1

Dr

diag(aλ+
χH2

6
,−aλ+

χH2

6
,−χH

2

3
) (235)

is an effective rate of strain tensor corresponding to an asymmetric elongational flow

with all three stretching rates unequal in general.

In the coordinate system with basis given by the three orthonormal eigenvectors of

the second moment tensor, the second moment is diagonal with diagonal components

given by

〈m2
i 〉 =

∫
‖m‖=1

m2
i f(m)dm, i = 1, 2, 3. (236)

We non dimensionalize the Smoluchowski equation by the time scale set by rotary

diffusivity t0 = 1
Dr

. Then
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q̂ = qt0, λ̂ = λt0, χ̂ = χH2
0 t0 (237)

where H0 is a characteristic field strength. We identify Pe = 2q̂ as the Peclet number

in simple shear or Pe = ãλ as the effective Peclet number in planar extension.

5.3. Simple shear flows coupled with a transverse mag-

netic field and a negative anisotropy

We now study parametric behavior of the reduced or target model for simple shear

coupled to a transverse magnetic field of variable strength. From the formula for the

stretching rate

ã =
1

q

√
(
χ

2
(H2

1 −H2
2 ))2 + (a p+ χH1H2)2 (238)

we note that the magnetic field strength alters ã. We discretize the Smoluchowski

equation using a spherical harmonic expansion

f(m, t) =
L∑
l=0

l∑
m=−l

alm(t)Y m
l (m) (239)

where Y m
l are complex spherical harmonic functions, and L is the order of truncation

in the Galerkin approximation. After this discretization, the Smoluchowski equation

is transformed to a system of ordinary differential equations for the coefficients alm.

For the simulation results described below, we choose L = 10 and we get 65 differential

equations. This choice gives robust results for small to moderate concentration N and

magnetic field strength χH2.

Note that in-plane attractors are characterized by the property that alm = 0 for all

odd integers m; otherwise, the attractor is out-of-plane. We utilize the continuation

software AUTO [119] to produce the bifurcation diagrams presented below.

As noted in [73] based on second-moment closure predictions, the impact of the

transverse magnetic field for materials with a negative anisotropy is to assert an
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attraction toward the flow plane, or equivalently, a repulsion of the principal axis

away from the vorticity axis. One anticipates any steady or transient attractor to

have reduced out of plane components compared to zero magnetic field strength.

We will address the impact of the transverse magnetic field with respect to several

representative regimes of the effective Peclet number. In the following discussion, we

decouple ã from H̃ to investigate how the variation in anisotropy and field strength

H̃ affect the dynamics of the system at fixed values of (q, ã).

We first fix ã = 1, N = 5.5, and vary the Peclet number Pe = 2q. We have found

in [76] that, absent of the magnetic field, there are 7 distinct intervals of Pe with

different attractors or multiplicity of attractors, and with transitions between them

at the boundaries of each interval. Now we study the consequences of turning on a

magnetic field and raising its amplitude for one representative attractor in each of

these 7 intervals.

Figure 5.1. Bifurcation diagram of a0
2, the coefficient of spherical har-

monic mode Y 0
2 (time averaged for periodic states), as a function of en-

tropy χ at parameter values Pe = 1, ã = 1 and N = 5.5. As χ increases,
the logrolling (LR) steady states undergo a sharp unsteady transition to
kayaking states (K1) and then collapse onto in-plane tumbling-wagging
(T −W ) orbits. The solid green and black curves indicate stability and
other curves are unstable.
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As shown in Figure 5.1, when the magnetic field is absent, the stable attractor at

parameter values Pe = 1.5, ã = 1, N = 5.5 is a so-called logrolling state (LR).

This means the principal axis of the PDF is aligned with the vorticity axis, and

the solution is steady. When we turn on the field and increase its strength with

negative anisotropy, the steady LR states persists up to a critical strength, then

stiffly transitions to an in-plane tumbling limit cycle, which then transitions at some

higher strength to a wagging limit cycle (finite amplitude oscillation of the peak

of the PDF). This stiff transition is mediated by a steady-unsteady transition from

vorticity-aligned steady states to kayaking limit cycles, where the peak of the PDF

rotates around the vorticity axis. Presumably, the closed path of the peak of the PDF

migrates from near the vorticity axis all the way to the shear plane over this short

parameter range.

Thus, we find the magnetic field forces vorticity-aligned sheared steady states to in-

plane periodic orbits. This is not a transition scenario that one might have predicted a

priori on intuitive grounds. This phenomenon is furthermore not captured by closure

models, which except for one special closure of Hinch and Leal, do not yield logrolling

stable states.

Next, we shift to Pe = 3, holding ã = 1 and N = 5.5, with solutions versus mag-

netic field strength shown in Figure 5.2. The shear response is a K1 limit cycle at zero

anisotropy χ = 0. As χ increases, the K1 attractor ”collapses” to a tumbling/wagging

orbit (TW ) in a hysteresis bifurcation. The bistable K1 and tumbling/wagging solu-

tions coexist in a very narrow band of χ. This is once again a rather non-intuitive

response diagram.

When the Peclet number is further increased to Pe = 4 with fixed ã = 1, N = 5.5,

there are bistable K1 and tumbling/wagging orbits for pure shear, χ = 0. The

stable tumbling/wagging solution persists for all χ > 0 shown here, whereas the K1
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Figure 5.2. Bifurcation diagram of a0
2, the coefficient of spherical

harmonic mode Y 0
2 (time averaged for periodic states), as a function of

entropy χ at parameter values Pe = 3, ã = 1 and N = 5.5. The response
is K1 for zero anisotropy χ = 0. As |χ| increases, the K1 attractor
collapses to a tumbling/wagging orbit (TW). In a very narrow band of
χ, the K1 and TW attractors coexist.

solution survives up to a certain value of χ > 0 and then vanishes by a turning point

bifurcation. The solution as a function of the anisotropy χ is shown in Figure 5.3.

Figure 5.3. Bifurcation diagram of a0
2, the coefficient of spherical

harmonic mode Y 0
2 (time averaged for periodic states), as a function

of entropy χ at parameter values Pe = 4, ã = 1 and N = 5.5. In this
parameter regime, the bi-stable attractors are K1 orbits in pure shear
(χ = 0) and the tumbling/wagging orbit (TW ). As |χ| increases, the
out-of-plane K1 orbits disappear, leaving only the in-plane, tumbling/
wagging orbit.
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At Pe = 5, ã = 1 and N = 5.5, the K1 solution branch behaves qualitatively the same

as in the case of Pe = 4. However, at small anisotropy, a pair of stable K2 solutions

exist. They merge into the tumbling/wagging solution as the anisotropy enhances.

So, at small anisotropy, the two distinct kayaking solutions are bi-stable. Figure 5.4

depicts the bifurcation diagram.

Figure 5.4. Bifurcation diagram of a0
2, the coefficient of the spherical

harmonic mode Y 0
2 (time averaged for periodic states), as a function of

anisotropy χ at parameter values Pe = 5, ã = 1 and N = 5.5. In this
parameter regime, two stable attractors (K1 and K2) co-exist at small
χ. K1 disappears after a turning point, leaving K2 as a single attractor
for a short interval of χ. Then the out-of-plane tilted kayaking orbit
K2 transitions into an in-plane tumbling/wagging orbit TW as χH2

increases.

At Pe = 6, ã = 1 and N = 5.5, the zero anisotropy limit is dominated by the stable

K1 solution. As the anisotropy increases, the stable PDF goes through a pair of out-

of-plane steady states and then aligns in the flow direction. Ironically, the anisotropy

later destabilizes the flow-aligning steady state to generate a tumbling/wagging so-

lution at high anisotropy. This is a phenomenon that requires further investigation.

Figure 5.5 depicts the bifurcation diagram.

For ã = 1 and N = 5.5, at Pe = 6.5 or Pe = 7, the bifurcation diagram is essentially

the same as for Pe = 6 shown in Figure 5.6.
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Figure 5.5. Bifurcation diagram of a0
2, the coefficient of the spherical

harmonic mode Y 0
2 (time averaged for periodic states), as a function of

anisotropy χ at parameter values Pe = 6, ã = 1 and N = 5.5. In this
parameter regime, the stable attractor at small χ is K2. It connects to a
stable out-of-plane (OS) orbit as χ increases; the OS orbit comes down
to a flow-aligning state as χ increases further. A tumbling/wagging
orbit emerges at large values of χ!

Figure 5.6. Bifurcation diagram of a0
2, the coefficient of the spherical

harmonic mode Y 0
2 (time averaged for periodic states), as a function of

anisotropy χ at parameter values ã = 1, N = 5.5 and Pe = 6.5 (left),
Pe = 7 (right). For Pe = 6.5, the stable sheared attractor absent
of a magnetic field is a pair of out-of-plane stable states OS. They
collapse onto a flow-aligning state as χ increases. For Pe = 7, the
stable attractor absent of magnetic field is a steady flow-aligned state
FA. For both cases, a tumbling/wagging orbit emerges from the FA
branch at large values of χ!
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This sequence of numerical experiments shows that the impact of the magnetic field

imposed perpendicular to the flow plane coupled with a negative anisotropy is to drive

the out-of-plane peak axis of the PDF to a PDF with peak axis in-plane. However,

at high Peclet numbers, the effect of anisotropy is two-fold: time-periodic motion

is arrested at intermediate magnetic field strengths, but then limit cycle behavior is

predicted to obtain at large anisotropy. This nonlinear effect of the anisotropy is a

manifestation of the nonlinear material response to the external field, and experimen-

tal verification would be helpful to validate the theory.

Now we move on to four other sheared responses absent of the magnetic field. The

first two are pictured in Figure 5.7 for N = 5.1, ã = 1 and two values of Pe. For

Pe = 3 (left), the stable attractors absent of the magnetic field are K1 and a chaotic

orbit, CH. As χ increases, the K1 attractor disappears, leaving only the chaotic

state. Then through period halving, the chaotic attractor disappears and a pair of

K2 attractors emerge. Then, the K2 attractors sharply transition to steady OS and

then onto in-plane steady states FA. Finally, at higher field strength, TW states

emerge. For Pe = 3.6 (right), the bifurcation is similar. One of the main differences

is that, absent of the magnetic field, only the chaotic response is an attractor.

The other two scenarios are pictured in Figure 5.8 for N = 6, ã = 1, and two values

of Pe. For Pe = 7 (left), the stable attractors absent of a magnetic field are LR

and TW . As χ increases, the LR attractor becomes the periodic K1 attractor. Then

at a turning point, K1 disappears. The TW state persists for all χ. For Pe = 8.2

(right), the stable attractor absent of a magnetic field is TW . This state persists as

the magnetic filed is coupled.
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Figure 5.7. Bifurcation diagram of a0
2, the coefficient of the spherical

harmonic mode Y 0
2 (time averaged for periodic states), as a function of

anisotropy χ at parameter values ã = 1, N = 5.1 and Pe = 3 (left),
Pe = 3.6 (right) . For Pe = 3 (left), the stable attractors absent of
a magnetic field are K1 and CH. As χ increases , the K1 attractor
disappears, leaving only the chaotic state. Then through period halv-
ing, the chaotic attractor transitions to a pair of K2, then OS steady
out-of-plane states, then in-plane steady states FA, and finally TW
limit cycles at sufficiently high amplitude. For Pe = 3.6 (right), the
bifurcation sequence is similar.

Figure 5.8. Bifurcation diagram of a0
2, the coefficient of the spherical

harmonic mode Y 0
2 (time averaged for periodic states), as a function of

anisotropy χ at parameter values ã = 1, N = 5.1 and Pe = 7 (left),
Pe = 8.2 (right). For Pe = 7 (left), the stable attractors absent of
a magnetic field are LR and TW . As χ increases, the LR transitions
to K1 limit cycles, which disappear at a turning point, leaving only
the TW limit cycle branch. For Pe = 8.2 (right), the stable attractor
absent of a magnetic field is the TW limit cycle, which persists as the
magnetic field turns on and amplifies.
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5.4. Planar extensional flows coupled with a coplanar

magnetic field

In dimensionless variables, the steady state solutions of the Smoluchowski equation

are governed by the Boltzmann distribution with the potential Eq.(234), where

V = −3N
2

M : mm− 1
2
De : mm,

De = diag(Pe+ χ
6
,−Pe+ χ

6
,−χ

3
).

(240)

We choose coordinates to align with the three principal axes of the second moment

tensor M , n1,2,3, where n3 is the transverse external field direction. We parametrize

the unit vector m by

m = cos θn1 + sin θ cosφn2 + sin θ sinφn3. (241)

The second moment tensor also admits a biaxial representation

M = s(n1n1 −
I

3
) + β(n2n2 −

I

3
) (242)

where s and β are the two order parameters which describe degrees of anisotropy of

the PDF . If either vanishes or equal, the PDF is uniaxial; if neither vanish nor equal,

the PDF is fully biaxial. In the above parametrization, s and β satisfy the following

equations

s− β
2

= 〈3
2

cos2 θ − 1
2
〉,

β = 〈sin2 θ cos 2φ〉,

(243)

where
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〈(•)〉 =
∫
‖m‖=1

(•)fdm,

f = 1
Z
eh,

h = 3N
2

[(s− β/2) cos2 θ + β
2

sin2 θ cos 2φ]+

1
2
[3
2
(Pe+ χ

6
) cos2 θ + (−1

2
Pe+ χ

4
) sin2 θ cos 2φ].

(244)

We first note that β 6= 0 unless (−1
2
Pe + χ

4
) = 0. In fact, we can show steady states

are all biaxial if

− 1

2
Pe+

χ

4
6= 0, P e 6= 0 (245)

Therefore, the steady states are primarily biaxial except in very special cases. We also

note that for planar extension flows, we only need to discuss the case where Pe ≥ 0

since Pe < 0 can be obtained through a 90o planar rotation within the extension

plane.

We denote the three non-negative eigenvalues of the second moment tensor by d1,2,3,

which characterize the degree of orientation with respect to each director n1,2,3, re-

spectively. Then,

s = d1 − d3, β = d2 − d3 (246)

Figure 5.9 depicts the steady state solutions at three selected values of the Peclet

number Pe = 0.01, 0.1, 1, respectively, with χ = 1. When Pe = 0.01, the effective

rate of strain tensor is

De = diag(0.01 + 1/6,−0.01 + 1/6,−1/3) (247)
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Figure 5.9. Order parameter s and β as functions of N at selected
Peclet number Pe = 0.01, 0.1, 1. The anisotropy parameter is set at
χ = 1. The flow-aligning and the logrolling state (the major director
is perpendicular to the flow) are the two stable states, in which the
logrolling state is metastable. The solid black curves represent the
stable branches.

All three directors align with the coordinate directions. The director in the flow

direction e1 corresponds to a stable steady state where the order parameters satisfy

s > 0, β > 0, s > β , implying

d3 < d2 < d1 (248)

We infer stability by examining the second variation of the generalized free energy

density. Since the extension rate in e1 is the largest, the degree of orientation is

the largest in that direction as well. In addition, the degrees of orientation correlate

with the extension rate, i.e., the order of the degrees of orientation follows that of

the extension rates. The scenario persists in the case of Pe = 0.1. However, when

Pe = 1, the extension rate along e3 exceeds that along e2, the order of the degrees of

orientation switches to

d2 < d3 < d1 (249)
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This is captured from β < 0. Besides the stable steady state, there is another

metastable state (a linearized stable state, but not a global minimum of the gen-

eralized free energy) given by a solution with the major director pointing in the

direction perpendicular to the flow plane, for which s < 0, β < 0. This is shown by

the second family of solutions in Figure 5.9, labeled dark solid. This is the so-called

logrolling solution. We remark that this branch is unstable in the closure model due

to the closure approximation [73].

At fixed value of Pe, the role of χ is to increase the extension rate in the plane while

reducing it in the perpendicular direction. We expect the degree of orientation to

increase in the flow direction in the flow-aligning stable steady state while decrease in

the logrolling stable steady state. At concentrations less than N = 5, the logrolling

steady state only survives up to a finite value of χ. However, when N > 5, it exists

for all χ in the range we studied. Figure 5.10 and Figure 5.11 depict the steady states

at selected Peclet number for N = 4.7 and N = 6, respectively.

Figure 5.10. Order parameters s and β as functions of χ at selected
Peclet numbers Pe = 0.01, 0.1, 1 and concentration N = 4.7. The flow-
aligning and the logrolling state (the major director is perpendicular
to the flow) are the two stable states, in which the logrolling state is
metastable surviving only at small anisotropy. The solid black curves
represent the stable branches.
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Figure 5.11. Order parameters s and β as functions of χ at selected
Peclet numbers Pe = 0.01, 0.1, 1 and concentration N = 6.0. The flow-
aligning and the logrolling state (the major director is perpendicular
to the flow) are the two stable states, in which the logrolling state is
metastable. The solid black curves represent the stable branches.

5.5. Conclusion

We have explored various phenomena associated with the strong coupling of coplanar

linear flow and magnetic fields in rigid rod suspensions. The approach is based on

a reciprocity relation of the Doi-Hess kinetic theory model, derived on [73], which

reduces the problem to either of two simpler kinetic models, depending on whether

the linear planar flow is rotational or irrotational. In the rotational case, we solve the

kinetic equation with a new spherical harmonic Galerkin method, coupled with the

continuation software AUTO. Various predictions are made, indicating a regularizing

influence of a coplanar magnetic field on each type of sheared monodomain attrac-

tor. For irrotational flow, analytical results are given first based on a Boltzmann

distribution for the PDF, followed by numerical solution of the resulting steady state

equilibrium equations.
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Chapter 6

Orientational dynamics of sheared BLCPs

In this Chapter, we present the nematodynamics of a mesoscopic system consist-

ing of sheared biaxial liquid crystalline polymers (BLCPs) using a hydrodynamical

kinetic theory developed in Chapter 3 in which the BLCP is modeled as rigid, biax-

ial, ellipsoidal molecules immersed in viscous solvent. The governing Smoluchowski

equation in the model is solved in selected regions of the material parameter space

and a range of accessible shear rates using the Wigner-Galerkin spectral method. In

addition to the truly biaxial flow-aligning steady states, logrolling states and out-

of-plane steady states, we report the presence of two new time-periodic motions,

chaotic motion and associated phase transitions in the range of shear rates and se-

lected material parameters. Rheological signatures of the sheared mesoscopic system

are identified with predominant shear thinning in all phases and alternating signs

between the normal stress differences in steady vs time-dependent motions. Finally,

we detail the rheological responses in the range of accessible shear rates and selected

material parameters.

6.1. Introduction

It was predicted in the 1970’s that biaxial nematogens in liquid crystals may exhibit

mesoscopic biaxiality at equilibrium under certain conditions besides the uniaxial

symmetry reported earlier [42, 101, 102]. The theoretical prediction of the biaxial

phase of biaxial nematogens by Freiser [102] was confirmed by computer simulations

of biaxial liquid crystals in the 1990’s and early 21st century [52, 36, 37, 33, 45]. It

was not until 2004, when several groups of experimentalists, independently discovered
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the biaxial phase using different biaxial nematogens [43, 31, 44, 47, 39]. In the

past, studies on biaxial liquid crystals and their interactions with external fields were

concentrated either on uniaxial phases of biaxial molecules [48] or on flow or external

field induced biaxial phases of purely uniaxial molecules [74, 72, 75, 76]. Very

few studies in this direction have touched upon the biaxial phases due to biaxial

molecules. Leslie and his coworkers [107, 35] extended the well-known Ericksen-Leslie

continuum theory to biaxial liquid crystals, where they derived the theory based on

a single second order tensor. Recently, Virga et al. [97, ?, 34, 100] developed a self-

consistent mean field theory for thermotropic biaxial liquid crystals employing two

second order, trace-less biaxial tensors that account for both the intrinsic biaxiality

and the induced mesoscopic phase biaxiality at equilibrium. This model was built

upon the fundamental belief that D2h symmetry remains in the biaxial system when

coarse-grained to mesoscopic level. In addition to the thermotropic biaxial liquid

crystals discovered recently [43, 31, 44, 47, 39], there had been lyotropic biaxial

liquid crystal systems exhibiting biaxial phases being identified in the past [17, 32,

40]. However, in the presence of an asymmetric external field (like shear flow), the

D2h symmetry of the BLCP disappears and the two second order tensors ceases to

have a common eigen-frame. The skewness between these two tensors highlights a

drastically different mesoscale orientational structure in contrast to the equilibrium

state. Hence, in this chapter we pursue the extension of the previously proposed

thermodynamic mean-field theories [101, 97] to allow the hydrodynamic coupling

between the biaxial nematogens and small molecule solvent in solutions of the BLCPs

to study shear induced phases, motions, and phase transitions as well as associated

rheological responses [78].

The chapter is organized as follows. In Sec.6.2, we briefly describe the kinetic the-

ory for flows of BLCPs (derived in chapter 3), present the Smoluchowski equation
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for a homogenous flow of BLCPs, modeled as ellipsoidal suspensions in viscous sol-

vent and provide the Wigner- Galerkin spectral scheme required to solve the system

(Sec.6.2.3). In Sec.6.3, we report and discuss the various aspects of the numerical

results in sheared BLCPs: the presence of the newly discovered time-periodic and

chaotic motions in addition to the steady-states; the associated nematic order and

the mixed moments or correlation matrices with respect to the orientational distri-

bution function which are used to describe the mesoscale material structures in fast

motion ESR [64] and NMR [38] experiments (Sec.6.3.1). The rheological response of

this sheared liquid crystal system is elucidated in Sec.6.3.2 . The chaotic regime is

elaborated in Sec.6.3.3. The details on the derivation of the associated stress consti-

tutive equation are supplemented in the Appendix A.

6.2. Kinetic theory and numerical method

We first present the kinetic theory for monodomain solution of BLCPs, in which the

BLCP molecule is modeled as a rigid, ellipsoidal (or brick) shaped object immersed

in viscous solvent. A Galerkin spectral method based on the Wigner function is de-

veloped to solve the Smoluchowski equation in the kinetic theory in the monodomain

regime.

6.2.1. Kinetic theory. Let f(Ω, t) be the orientational probability density

function (PDF) of the ellipsoidal (or brick-shaped), rigid biaxial nematogens, where

Ω = (α, β, γ) denotes the Euler angle triplet describing the instantaneous orientation

of the mutually orthogonal molecular axes (m,n,k) with respect to the fixed Carte-

sian frame (x, y, z). m is indentified as the longest semiaxis of length a, n the second

longest of length b, and k the shortest of length c of the ellipsoidal molecule. i.e.,

a > b > c > 0. The transport of the PDF is governed by the kinetic or Smoluchowski

equation in mesoscale accounting for the configurational space flux due to the Brow-

nian motion of the molecules, the excluded volume or steric effect among the biaxial

nematogens, and the flow-induced flux. The Smoluchowski equation in the molecular
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(or rotating) frame is derived using the phase-space diffusion theory with constraints

[85] and given by

∂

∂t
f +∇(vf) = L∗Dr · (Lf +

1

kBT
fLU)− L∗ · (gf) (250)

where

Dr = Dr0ζ Diag(
1

1 + r2
b

,
1

r2
b + r2

c

,
1

1 + r2
c

)

is the rotational diffusivity (assumed a constant matrix), Dr0 is the rotational diffu-

sivity of perfectly rigid spheres in an isotropic state, ζ is a scaling constant (ζ = 2

when the ellipsoid degenerates into a sphere), rb = b
a
, rc = c

a
are the two aspect ratios

of the biaxial molecule; L = ix × ∂
∂x

is the angular momentum operator; kB is the

Boltzmann constant, T is the absolute temperature; g is the torque due to the flow

given by

g = i[ m
r2b+r2c

(∇v : (r2
bnk− r2

ckn)) + n
1+r2c

(∇v : (r2
ckm−mk)) + k

1+r2b

(∇v : (mn− r2
bnm))],

(251)

∇v is the velocity gradient of the velocity field v; U is the excluded volume potential

given by

U = −3

2
NkBT [ξ0M : mm + γ0(N : mm + M : nn) + λ0N : nn], (252)

where M = 〈mm〉 and N = 〈nn〉 are the second moment tensors of m and n with

respect to the pdf, respectively,

〈(•)〉 =

∫
(•)f(Ω)dΩ

123



www.manaraa.com

denotes the ensemble average with respect to the pdf (f). N is dimensionless param-

eter measuring the strength of the potential, known as the strength of the intermolec-

ular potential or dimensionless concentration [85], (ξ0, λ0, γ0) are two dimensionless

material parameters characterizing the full range of the excluded volume potential

and are linearly related to the parameters (γ, λ) of the Straley’s pair-potential [101]

as follows:

ξ0 = 1 + 2γ + λ, γ0 = 2(γ + λ), λ0 = 4λ. (253)

The free energy for the ensemble of the ellipsoidal suspension, consisting of the rota-

tional Brown motion and the excluded volume interaction is given by

A[f ] = ν

∫
G

[kBT (lnf − f) +
U
2

]fdΩ, (254)

where ν is the number density of the ellipsoidal molecules and G is the domain

occupied by the ensemble system. The chemical potential is given by the variation of

the free energy with respect to the number density:

δA
νδf

= kBT [lnf +
U
kBT

]. (255)

We introduce a normalized chemical potential denoted by

µ = lnf +
U
kBT

. (256)

6.2.2. Nondimensionalization. We consider an imposed plane shear flow field

in this study

v = (γ̇y, 0, 0, ) (257)

where γ̇ is the shear rate. We define the Peclet number as the dimensionless shear

rate
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Pe = γ̇t0 (258)

We choose the characteristic time scale as

t0 =
1

Dr0ζ
(259)

The dimensionless flow field for the plane shear in the Cartesian coordinate is then

given by

v = Pe(y , 0, 0). (260)

After non-dimensionalization with the time-scale (t0 = 1
ζDr0

), Eq.( 250) becomes:

∂

∂t̃
f = L∗D̃r · (Lf +

1

kBT
fLU)− L∗ · (g̃f), (261)

where D̃r = Diag( 1
1+r2b

, 1
r2b+r2c

, 1
r2c+1

) and g̃ = g̃(Pe) which is the flow flux with the

rate of strain tensor replaced by its dimensionless form. In our studies to follow, we

will drop the tilde˜on the dimensionless quantities.

6.2.3. Numerical method. We employ a Wigner function based Galerkin

spectral method to solve the Smoluchowski equation numerically. Using the Wigner

function DLmn(Ω) as the basis, we discretize the orientational PDF f as follows [75, 76]

f(t,Ω) =

L0∑
L=0,|m|,|n|≤L

CLmn(t)DLmn(Ω), (262)

where CLmn(t) are the time-dependent generalized Fourier coefficients [62]. The dis-

cretized equations are obtained by enforcing the residual of the equation system to

be orthogonal to the set spanned by the basis function

{DLmn(Ω), |m|, |n| ≤ L, 0 ≤ L ≤ L0}. (263)
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We solve for the coefficients CLmn(t) with the initial conditions CLmn(0) obtained

at f (0,Ω) = f0(Ω), where f0(Ω) is the equilibrium PDF [97, 100, 72, 74]. In the

calculations, we use L0 = 10 and the four-step Runge-Kutta scheme with the step

size ∆t = 10−3 to advance the system in time.

Extensive numerical convergent tests have been done to ensure the code is indeed

convergent as we increase the number of modes in the discretized system. The num-

ber of modes chosen in the computation is primarily based on the consideration of

efficiency. For L = 10, the error of approximation is about 1%. It reduces to 0.1%

should a much large L (say L = 20) is adopted. For practical purposes, the resolution

at L = 10 suffices.

6.3. Numerical results in shear flows

The governing system of equations includes one flow parameter Pe, two molecular

geometrical parameters rb and rc, and three material parameters associated with

the steric interaction among molecules. Given the six-dimensional parameter space,

an exhaustive search of the parameters is clearly beyond our reach. We therefore

settle with numerical investigations carried out with selected sets of parameters in the

parameter space. We first fix the molecular geometry parameters at rb = 0.51, rc =

0.36. Our analysis then focuses on the various orientational phases/structures and

their transitions in a selected set of material parameter regimes and accessible shear

rates along with the analysis of the order parameters, the mixed moment tensors and

the rheological responses.

The SO2 rotational symmetry with respect to the molecular axis m and the D2h sym-

metry in uniaxial liquid crystals ensures that the second moment 〈mm〉 is sufficient

to render the mesoscopic orientational information about the LCP ensemble. When

the contiguous rotational symmetry is broken in the biaxial molecule, six second

moments must be taken into account. From the autocorrelation matrices, we have

already extracted four invariants named order parameters discussed in the previous
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section. What orientational information do the major directors of the autocorrelation

matrices and other three mixed moments 〈mn〉, 〈mk〉, 〈nk〉 convey is an issue we will

discuss next.

First, the three molecular axes m,n,k of the biaxial molecule are mutually orthogonal

m · n = n · k = m · k = 0. (264)

These scale up to the mesoscale to yield the following three trace conditions on the

mixed moments

tr(〈mn〉) = tr(〈mk〉) = tr(〈nk〉) = 0. (265)

Secondly, the mixed moments are the correlation matrices among the pairs of the

molecular axes. Therefore, they provide additional mesoscopic information of molec-

ular orientation, correlation and phase. We study these mixed moments by defining,

what we term as, the effective Orientational Correlation Functions (OCF), for any

pair of unit vectors ri and rj,

φmn(ri, rj) = rTi · 〈mn〉 · rj

= 〈(ri ·m)(rj · n)〉

= 〈(cos∠rim)(cos∠rjn)〉

(266)

which is the mean value of the product of the direction cosines of the angle between

the pair of vectors (ri, m) and the pair of vectors (rj,n). Hence, φmn gives the

correlation between the projection of m onto the direction ri and n onto the direction

rj. Similarly, its Auto Correlation Function (ACF) (ψ(ri) = ri · 〈mn〉 · ri) is defined

as the correlation between the degree of orientation of m and that of n in direction

ri. The choice of ri is fairly flexible depending on the problem investigated. We

restrict our qualitative analysis in this paper to vectors {ri, rj} ∈ {m1,n1,k1}, where
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(m1,n1,k1) are the major directors of the second moments (M,N,K) respectively.

Hence, by definition, the OCFs give measures of the correlational alignment of the

molecular axes (m,n,k) with respect to the mesoscale major directors (m1,n1,k1).

Given the recent studies of Bisi et al. [34] on the equilibrium phase diagram of the

biaxial liquid crystal using an extended Straley’s potential, we focus on a few selected

points in the material parameter space that are representatives of various biaxial

phases and study how shear will alter the various biaxial states. Our numerical

studies are carried out in the range of the shear strength 0.0 ≤ Pe ≤ 14.0 and for

LCP concentrations N = 4.9, 5.5, 6.28, 7.84, respectively. Based on the equilibrium

phase behavior, we divide the admissible material parameters in the (γ, λ)-space into

four regions (Figure 6.1). Region(A): λ ≥ 1.0, where the excluded volume attractive

interaction is highly biaxial (large value of λ; the coefficient of the purely biaxial

term N : nn in the potential); Region B: the region inside the space γ2 ≤ λ < 1.0

and bounded below by the tricritical curve C1C3 (refer to [34]), where a first order,

temperature induced, phase transition from isotropic → biaxial phase in equilibrium

was reported in [97]; Region C: the region inside the space λ ≥ γ2 and bounded above

by C1C3, where the nature of the transition in region B changes to a second order

transition from isotropic→uniaxial→biaxial phase, across the tricritical curve C1C3;

Region D: 0 ≤ λ < γ2; |2γ| ≤ 1 + λ. The excluded volume potential in region (D) is

not convex (partially repulsive). A detailed exercise in this region showed that the

equilibrium free energy may not have a global minimum and hence the steady-state

solution is obtained via a minimax principle [100, 34].

6.3.1. Orientational dynamics, phases and correlation functions. The

nematic phases in equilibrium are torque-free in the presence of the excluded volume

interaction. When shear is imposed, the external shear exerts a shear torque to

the biaxial molecules to break down the D2h rotational symmetry and to rotate the

molecules. In response, the excluded volume potential exerts the elastic torque to
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Figure 6.1. Range of admissible values of the material parameters
(γ, λ) of the excluded volume potential, described in Eq.(252). The
regions have the following color scheme: Region (A):white; Region
(B):yellow; Region (C):magenta and Region (D):green. The curves TT ′,
TT” and TO are explained in Section ??. The coordinates of the labeled
points are as follows: O1 : (−0.5, 0), T” : (−0.1634, 0), O : (0, 0), T ′ :
(0.1634, 0), O2 : (0.5, 0), O′ : (1, 1), T : (0, 1), O” : (−1, 1), C1 :
(−0.469, 0.22), C2 : (0.469, 0.22)

counter the shear induced one. Various new states and motions arise out of the

balance/inbalance between the two competing torques under shear. We note that in

all our investigations major director of M, m1, is always the distinguished direction

in the mesoscale ensemble and thereby maintains the major director of the system.

The various orientational phases and structures found by our numerical investigations

are (a) Log -Rolling LR, (b) Flow-Alignment FA, and (c) Out-of-Plane OS steady

states; and periodic responses (d) Mixed-Kayaking MK, (e) Fluttering-Kayaking

FK, and (f) Chaotic CH motion. The representative of each is shown in Figure 6.2,

respectively. It is widely believed that the sets of eigenvectors of the two second mo-

ments M and N coincide in quiescent state. When the flow is present, however, they

no long do so that M and N becomes skewed in their in-plane eigenvectors. In this
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section, we describe the orientational dynamics, phases/states, and state transitions

that occur at the four different regions of the material parameter space as we vary

the Peclet number and the corresponding behavior of the order parameters and the

correlation matrices. We discuss the results for each of the four regions, respectively.

6.3.1.1. Region A. In region(A), the sequence of orientational response is:

LR→OS →FA via an out-of-plane steady state (OS). This is reminiscent of the

flow-driven uniaxial liquid crystals in some concentration regime predicted using the

Doi-Hess kinetic theory [76, 85]. The logrolling state, where the major director of the

second moment tensor M aligns in the vorticity direction, is the one subject to the

minimum elastic torque counter-balancing the flow-induced torque and is therefore

the preferred stable steady state for the LCP at small Pe. As the shear strength

increases, the strength of the flow-induced torque enhances. When the flow-induced

torque exceeds a critical value, the counterbalancing elastic torque is sufficiently large

to sustain the flow-aligning state so that the system suddenly switches to the flow-

aligned (FA) steady state beyond the critical Pe∗, where the major director of the

system m1 aligns approximately in the flow direction and remains so for all larger Pe.

The value of this critical shear strength increases with the LCP concentration (N)

because the excluded volume interaction becomes stronger with higher values of N .

Next, we detail the behavior of the order parameters (s1, β1, s2, β2) at the point (γ =

0.0, λ = 1.0) for steady states in region (A) (Figure 6.3). The critical value of shear

at which the system goes through a phase transition is Pe∗ = 9.51 (for N=4.9),

Pe∗ = 9.72 (for N=5.5), Pe∗ = 10.1 (for N=6.28) and Pe∗ = 10.75 (for N=7.84)

respectively. In the LR state, the intrinsic uniaxial order parameter (s1) decreases

steadily and reaches its minimum at the end of the LR phase, when the major director

(m1) is about to change its alignment from the vorticity to the flow velocity-gradient

direction; in the FA state, the order parameter becomes monotonically increasing with

respect to Pe. This can be interpreted statistically as follows: some of the biaxial
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(a) (b)

(c) (d)

(e) (f)

Figure 6.2. Orientational phases and motions: (a) Log-Rolling state
( Pe = 1.0, N = 7.84, γ = 0.08167, λ = 0.5) (b) Periodic Mixed-
Kayaking (Pe = 7.6, N = 7.84, γ = 0.08167, λ = 0.5 and Period
T = 4.98) (c) Out-of-Plane steady state (Pe = 9.0, N = 7.84, γ =
0.1389, λ = 0.15 ) (d) Periodic Fluttering-Kayaking (Pe = 9.7, N =
7.84, γ = 0.08167, λ = 0.5 and Period T = 4.92) (e) Flow-Aligning
state (Pe = 12.0, N = 7.84, γ = 0.08167, λ = 0.5) (f) Chaotic motion
(Pe = 1.32, N = 4.9, γ = 0.45, λ = 0.0093654)
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molecules simply rotate their long axis toward the flow direction as the shear strength

increases leading to the reduced mesoscopic order in the vorticity direction; whereas

when m1 is in the flow-aligned direction, more biaxial molecules turn their long axis

to the direction enhancing the uniaxial order parameter.

(a) (b)

(c) (d)
Figure 6.3. Order Parameters ’vs’ non-dimensional shear strength
(Pe) at ( γ = 0.0, λ = 1.0) for different nematic concentrations (N).

Phase biaxial order parameter β1 experiences an initial decline and then increase until

the FA transition point, indicating an internal microstructure shakeup for the ensem-

ble of biaxial molecules during the variation of Pe. The intrinsic or the molecular

biaxiality parameter (β2) first decreases and then shows a steady increase at inter-

mediate shear correlating with the variation of β1. This is not an coincidence since

both measure the orientational discrepancy of biaxial molecular axes projected onto
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the flow-velocity gradient plane. They bottom up at different location of Pe though,

β1 at a smaller Pe than β2. Analogously, the overall biaxial order parameter s2 varies

in sync with the uniaxial order parameter s1. At the critical value of shear strength

(Pe∗), a continuous curve with a kink (jump in its derivative) in order parameters

is observed in the three cases of N = 5.5, 6.28, 7.84 visibly but less so in the case of

N = 4.9. In the FA phase, (s1) shows a sudden and progressive increase (showing the

tendency of m1 to progressively improve alignment along the flow direction) while (

β1 and β2) decrease rapidly (relative to their mean value). The other order param-

eter (s2), following a similar pattern as the order parameter (s1), increases with Pe.

The angle that the major director m1 makes with the flow axis (x-axis) is called the

primary Leslie angle in the FA state; whereas the angle n2 makes with the velocity

gradient direction is called the secondary Leslie angle. Figure 6.4 shows the behavior

of the Leslie angles at (γ = 0.0, λ = 1.0, N = 7.84) for one representative solution. At

the LR state, the secondary Leslie angle is negative while the primary Leslie angle is

not defined. At the FA state, the primary angle is positive while the secondary Leslie

angle is negative. Both the Leslie angles gradually decay to zero as Pe increases.

Notice that the secondary Leslie angle varies continuously from the LR state into the

FA state despite that the underlying state undergoes LR-→FA transition.

Figure 6.4. The primary (φm1) and the secondary (φn1) Leslie angles
at (γ = 0.0, λ = 1.0, N = 7.84), a point in Region(A)
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Correlation functions (〈mn〉, 〈nk〉, 〈km〉) at (γ = 0.0, λ = 1.0, N = 7.84) are shown

in Figure 6.5. At equilibrium (Pe=0.0), the OCFs and ACFs are zero or nearly zero

(within the limits of numerical error), suggesting a complete lack of correlation among

the molecular axes in equilibrium. This also suggests that the eigen-frames of the sec-

ond moments (M,N,K) are identical at equilibrium. However, as the shear strength

increases, this alignment is rapidly distorted. As a result, they diverge monotonically

from their equilibrium values. The absolute values of the OCFs converge to two local-

ized band centered at 0.25 and 0.5, respectively. The ACFs (ψ(mn), ψ(nk), ψ(km))

remain close to zero in the weak shear regime and converge progressively towards a

non-zero value as the shear strength increases. They converge to a band of values near

0.5 in absolute values at high shear strength (i.e. Pe ≥ 10); suggesting that an overall

enhanced correlation among the molecular axes exists in the high shear region. These

correlation functions seem not to be sensitive to the phase/state transition from LR

to FA.

6.3.1.2. Region B. In region (B), at high concentration (N=5.5,6.28,7.84), the

major director m1 of the second moment M, changes its alignment from the LR

state at low Peclet numbers to the FA state at high Peclet numbers via a couple

of exotic out-of-plane time periodic motions termed as the mixed- kayaking (MK)

and the fluttering-kayaking (FK) motion, depicted in Figure 6.2. The MK motion

is a tilted kayaking of m1 combined with the full kayaking of the major director n1

of the second moment N [41, 106, 77, 75, 76]. In the MK phase, m1 and m2

(the second eigenvector of M) collectively go through a coordinated tilted motion

about their respective tilted axis; whereas, n1 and n2 (the second eigenvector of N)

rotate about the vorticity axis in a weakly non-planar fashion, imitating a full-blown

kayaking move against the flow velocity-gradient plane. In the FK motion, m1 wags

in the flow velocity-gradient plane while m2 goes through a truly nonplanar circular

motion. The coordinated motion of m1 and m2 is reminiscent of the fluttering fall of

a leaf or a feather in the air. In the meantime, n1 and n2 rotate around two tilted
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(a) (b)

(c)

Figure 6.5. Orientational Correlation Functions of (a) 〈mn〉 (b)〈nk〉
(c)〈km〉 at (γ = 0.0, λ = 1.0, N = 7.84). The meso-structure makes a
transition LR→FA at ν∗ = 10.75 . However, the correlation functions
seem not to be affected.

axes coordinately, analogous to the major director motion of the tilted kayaking. In

both the MK and the FK motion, the orbits of the pair of directors going through

the tilted kayaking osculate each other near the vorticity axis. The motion of the two

second moment tensors M and N is skewed most of the time in these time-periodic

motion and the angle between m1 and n1 oscillates between 40o and 140o within a

period (Figure 6.6).

In the LR state, the secondary Leslie angle is negative with a decaying magnitude as

Pe increases. It vanishes at the Pe value where the MK motion ensues. The primary
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(a) (b)

Figure 6.6. Angle between m1 and n1 in (a) MK phase (b) FK phase

Leslie angle emerges positive while the secondary one negative at the beginning of

the FA state. As Pe increases, they both converge to zero. Figure 6.7 depicts the two

Leslie angles as functions of Pe.

(a) (b)
Figure 6.7. The primary (φm1) and the secondary (φn1) Leslie angles
in the steady (a)Log-rolling phase (b)Flow-aligning phase at a point in
Region(C)

The eigenvalues of M corresponding to m1 and m2, which measure the degree of

orientation about the eigenvectors, fluctuates within 2% of their mean value (refer

Figure 6.8a ,Figure 6.8b). The wagging motion of the primary major director m1

yield a time-periodic change of the degree of orientation about the major axis by

the long molecular axis abruptly at the moment when the director swings back. In
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the absence of any out-of-plane steady state (OS) in this region, there is an abrupt

transition of the out-of-plane state of the directors from the MK state to the in-plane

(x-y plane) wagging in the FK state which resembles a first order ”phase transition”.

The time-averaged free energy density captures this abrupt change from the MK

state to the FK state , shown in (Figure 6.8c). Hence, the sequence of phase changes

in this region is: LR→MK→FK→FA for N = 5.5, 6.28. At N = 7.84, the jump

in the time-averaged free energy density disappears so that the transition improves

to a second order phase transition. At any phase/state transition, the free energy

density shows either a kink or a jump discontinuity in Figure 6.8. This reveals that

the transition between other adjacent states resembles the second order transition! At

lower concentration (N=4.9), this sequence reduces to: LR→OS→FA. The transition

resembles a second order phase transition.

The order parameters (s1, β1, s2, β2) at the point (γ = 0.0817, λ = 0.5) in region (B)

are shown in Figure 6.9. The critical values of shear at which the system experiences

a phase transition is Pe∗ = 5.8 (for N=4.9); Pe∗ = 5.1, 6.3 and 8.2 (for N=5.5);

Pe∗ = 6.4, 8.3 and 10.5 (for N=6.28) and Pe∗ = 7.6, 9.7 and 12.1 (for N=7.84)

respectively. As usual, irrespective of the nematic concentration (N), s1 decreases

steadily in the LR phase and reaches a minimum value at the end of this phase.

At N=5.5,6.28,7.84; when the system undergoes the periodic MK-phase; the order

parameter s1 shows a non-monotonic behavior, i.e. s1 increases, reaches a peak at an

optimal value of Pe and then decreases thereby reaching a minimum value at the end

of this phase. This trend repeats in the following periodic FK-phase. This indicates

that the long axis of the BLCP molecule can be more aligned in the direction of

the major director of the system at some Pe during the periodic motions; near the

transition Pe, the nematic order tends to get frustrated and thereby reduces. A

persistent improvement in the nematic order for m1 is only seen in the FA state as

Pe increases. These bumps in s1 are not visible at N=4.9 since the periodic phases

are absent for this value of BLCP concentration. The order parameter variation with
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(a) (b)

(c) (d)

Figure 6.8. Eigen-values in the periodic MK and FK motion corre-
sponding to the eigen-vector (a)m1 (b)m2 (c) The time-averaged free
energy density versus Pe. A first order transition at Pe=9.7 in region
(B) (dashed line) and a 2nd order transition at Pe=6.1 in region (C)
(solid line) is shown. (d) The same free energy data, highlighting the
small second order transitions at critical Pe-values

respect to Pe in s1, s2 and β2 are an analogous to the scenario alluded to in Region A.

The biaxial order β1, however, shows monotonic decreasing in LR state and increasing

in FA state.

The phase biaxial parameter β1, decreases in the LR and in the subsequent MK- and

largely in the FK-phase. In the FA-phase it remains more or less a concave-down

shape. The molecular biaxiality (β2) first decreases and then shows a slight increase

in the LR phase. Its variation in the subsequent phases is nonmonotone and perhaps
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(a) (b)

(c) (d)

Figure 6.9. Order Parameters ’vs’ non-dimensional shear strength
(Pe) at (γ = 0.0817, λ = 0.5) for different nematic concentrations (N).

negligible. The overall biaxiality parameter s2 varies in a pattern which is similar to

s1. Each of these order parameters show a visible second order discontinuity at the

critical Pe-values at which the system undergoes a phase transition. The correlation

functions (OCF) and the auto correlations (ACF) (refer Figure 6.10) diverge away

progressively from their values at equilibrium with an increase in the shear strength.

We observe like in Region A, there exist exactly two OCFs in each subplot converge

to a narrow and around 0.25 while the rest go to a band centered at 0.5. Between

the two OCFs, one converges to 0.25 while the other -0.25. The correlation functions

are insensitive to the state/phase transitions shown in the figure.
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(a) (b)

(c)

Figure 6.10. Orientational Correlation Functions of (a) 〈mn〉
(b)〈nk〉 (c)〈km〉 at (γ = 0.0817, λ = 0.5, N = 7.84). The
meso-structure makes the transition LR→MK→FK→FA at (ν∗ =
7.6, 9.7, 12.1) respectively.

6.3.1.3. Region C. In region (C), the state at concentrations N = 5.5, 6.28, 7.84

changes gradually in the sequence LR→MK→OS→FK→FA; as the shear rate in-

creases. At a lower concentration (N=4.9), the sequence is LR→ OS→ FA, with

the transitions occurring at (Pe∗=4.7, 5.9), respectively. At N=4.9 , a weaker ex-

cluded volume potential induces a smaller elastic torque to balance the imposed shear

torque. The system prefers to remain in one of the steady states and the periodic
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transitions vanish. The existence of the out-of-plane steady state OS (where the ma-

jor director m1 points away from the flow velocity-gradient plane), implies that the

transition of m1 from the out-of-plane unsteady MK phase to the in-plane unsteady

FK phase is a continuous (or second order) phase/motion transition. This fact is

corroborated by the free-energy diagram in Figure 6.8. The second moment tensors

M and N are primarily skewed and non-planar during these unsteady motions. Even

in the LR and the FA state, M and N share the vorticity axis as the common eigen-

vector direction, but the two tensors are skewed on the flow velocity-gradient plane

signifying a shear-induced broken symmetry. In the transitional out-of-plane steady

state (OS), all eigenvectors are skewed leading to additional broken symmetries. The

difference between the steady states at N = 4.9 and the steady states in region A is

that the OS state in this sequence exists on a computational resolvable interval of Pe

while it virtually jumps to FA state from LR in region A.

The order parameters at (γ = 0.1389, λ = 0.15), a point in region (C) are shown in

Figure 6.11. The critical shear strengths at which the phase transitions occur are

at Pe∗=4.7,5.9 (for N=4.9); Pe∗=4.2, 5.1, 6.3 and 9.3 (for N=5.5); Pe∗=4.9, 6.1,

7.6 and 10.9 (for N=6.28); and Pe∗=5.8, 7.3, 9.1 and 13.0 (for N=7.84) respectively.

The intrinsic uniaxiality parameter, (s1) , varies slowly on a concave-down curve in

the LR-phase and then increases monotonically at the beginning of the next phase

in various rates in different phases. The intrinsic biaxiality (β2 ), first shows a dip

and then rises steadily in the LR phase. At higher nematic concentration, the maxi-

mum value of (β2) is obtained at the end of the MK phase and at the beginning of

the out- of-plane steady state phase (OS). The other two order parameters (s2 and

β1) follow the pattern which is similar to order parameter (s1 and β2) respectively.

Unlike in Region (B), the choice of the material parameters (γ, λ) forces s1 (and s2)

monotonically increase starting from the periodic MK-phase. In the Out-of-Plane

steady state (OS), all the order parameters evolve linearly: s1,2 increase while β1,2
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decrease demonstrating a refocusing effect for the long axis of the BLCP molecule

to the major director direction of the system. s1 increases linearly with a slope:

0.0096 (at N=4.9), 0.0097 (at N=5.5), 0.0105 (at N=6.28) and 0.0111 (at N=7.84).

β1 decays with a slope: -0.0082 (at N=4.9), -0.0121 (at N=5.5), -0.0200 (at N=6.28)

and -0.0361 (at N=7.84). The slope of s2 is: 0.0167 (at N=4.9), 0.0250 (at N=5.5),

0.0340 (at N=6.28) and 0.0310 (at N=7.84), respectively, while the slope of β2 is: -

0.0021 (at N=4.9), -0.0020 (at N=5.5), -0.0013 (at N=6.28) and -0.0011 (at N=7.84),

respectively.

(a) (b)

(c) (d)

Figure 6.11. Order Parameters ’vs’ non-dimensional shear strength
(Pe) at (γ=0.1389, λ=0.15) for different nematic concentrations (N).

The correlation functions at (γ = 0.1389, λ = 0.15, N = 7.84) remain close to zero

in the weak shear regime and we again see a rapid divergence of the OCFs and the
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ACFs towards a non-zero value with an increase in shear strength. Noticeably, one

OCF shows distinctive sign than the rest of the correlation functions analogous to

the scenario seen in Region B.

6.3.1.4. Region D. Finally in region (D), we observe two different sequences of

states as Pe varies. At γ= 0.16198, λ=0.0093654 and N=5.5,6.28,7.84, we have the

sequence MK→OS→FK→FA. At lower LCP concentration (N=4.9), this sequence

reduces to OS→FK→FA. The other sequence is MK→CH→FK→FA at γ=0.45,

λ=0.0093654 and N=4.9, where CH stands for the chaotic state. The logrolling

phase is absent in this region because the repulsive excluded volume interaction is

weakly biaxial (smaller value of λ) and the torque due to shear dominates.

The chaotic solution (CH) arises at N=4.9 from the periodic MK state, inside the

Peclet window 1.15 ≤ Pe ≤ 2.5. The solution shows period-doubling bifurcations,

which leads to a harmonic cascade (see Table Table 6.1), starting from a periodic

rotation of m1 about a tilted axis. Figure 6.12a shows the evolution of m1 and

n1 in this chaotic regime, where two attractors for the major director m1 in the

vicinity of the two tilted axes in the CH motion can be easily identified. An estimate

of the maximal Lyapunov exponent was performed with the method used in [121].

Figure 6.12b depicts the stretching factor versus the non- dimensional iteration time

after an initial transient. The slope of the function (indicated by the dashed line)

at intermediate time, gives an estimate of the maximal Lyapunov exponent. This

quantity is positive (λ1 ∼ 0.228) and thus confirms the chaotic motion.

During the chaotic motion, the degrees of order measured by the eigenvalues of the

second moments oscillate irregularly. The range of oscillation for the largest eigen-

value of the second moment tensor M is about 6% while the largest eigenvalue of N

fluctuates about 8% (Figure 6.13).

The order parameters at (γ = 0.16198, λ = 0.0093654) are shown in Figure 6.14.

The critical shear strengths at which the phase transitions occur are at ν∗=3.7, 5.1
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Figure 6.12. (a) The trajectory of the eigenvectors m1 (marked solid
blue) and n1 (marked dashed red) after an initial transient. The parameter
values are N=4.9 , γ=0.45, λ=0.0093654 and (i) Pe=1.15; (ii) Pe=1.22; (iii)
Pe=1.26; (iv) Pe=1.32. (b) Stretching factor (details in [?]) versus the
iteration time at different embedding dimensions ’m’ and Pe = 2.00. The
starting distance between any two trajectories is ε = 0.002. The dashed line
indicates the slope at intermediate time.

Label Pe F = Pei−Pei−1
Pei+1−Pei

PDL1 1.161 . . .
PDL2 1.225 1.575
PDL3 1.266 1.819
PDL4 1.289 1.951
PDL5 1.300 . . .
PDR1 2.472 . . .
PDR2 2.381 2.299
PDR3 2.341 1.988
PDR4 2.321 . . .

Table 6.1. Column: (a) Shear strength corresponding to period doubling
bifurcations. (b)Feigenbaum number (F) which approaches the limit F →
1.958, a typical feature of harmonic cascading.

(for N=4.9); ν∗= 3.4, 4.6 and 5.8 (for N=5.5); ν∗=4.0, 5.5 and 7.3 (for N=6.28) and

ν∗=5.2, 7.0 and 9.1 (for N= 7.84) respectively. The intrinsic uniaxiality parameter

(s1) shows an increase of about 11% while the molecular biaxiality (β2) increases by

about 40%, as the shear strength increases from 0 to 14. The increase in the overall

biaxiality (s2) is about 16%. The phase uniaxiality (β1) decreases by about 50% of

it’s initial value at Pe=0.0. In this region and for all N investigated, the uniaxial
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Figure 6.13. Eigenvalues corresponding to the eigenvectors m1 and
n1 after an initial transient. The parameter values are N=4.9, γ=0.45,
λ=0.0093654 and Pe=1.32.

order parameter s1 increase monotonically with the shear strength. In the Out -of-

Plane steady state (OS), the order parameters either increase or decreases linearly.

s1 increases linearly with a slope: 0.0041 (at N=4.9), 0.0167 (at N=5.5), 0.0200 (at

N=6.28) and 0.0333 (at N=7.84). β1 decays with a slope: -0.0041 (at N=4.9), -0.025

(at N=5.5), -0.0083 (at N=6.28) and -0.0056 (at N=7.84). The slope of s2 is: 0.0054

(at N=4.9), 0.0667 (at N=5.5), 0.0668 (at N=6.28) and 0.0668 (at N=7.84) while the

slope of β2 is: -0.0011 (at N=4.9), -0.00083 (at N=5.5), -0.0008 (at N= 6.28) and

-0.00079 (at N=7.84). The biaxial order parameter β2 exhibits small numerical values

consistently in the region.

The correlation and the auto correlation functions at (γ = 0.16198, λ = 0.0093654, N =

7.84) in region D show similar behavior as in region B indicating enhanced correlation

in the mesoscopic system at higher shear strength.

6.3.2. Rheology. In this section, we discuss the rheological responses (normal

stress differences N1, N2, shear stress τ12 and the apparent viscosity τapp) of flows of

BLCPs in the four regions of the material parameter space. The friction coefficients

(η, ζ0) in the viscous stress are chosen as (0.01,0.035) respectively. The choice of
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(a) (b)

(c) (d)

Figure 6.14. Order Parameters ’vs’ non-dimensional shear strength
(Pe) at (γ=0.16198, λ=0.0093654) for different nematic concentrations
(N).

these constants apparently highlights the elastic stress in the total composition of the

stress.

In all cases, the second normal stress difference, N2, is one order of magnitude smaller

than the first normal stress difference, N1. The shear viscosity decreases with an

increasing concentration (N), irrespective of the shear strength applied, highlighting

the role of the nematic order to the reduction of the shear viscosity in the flow.

Uniformly, we predict a shear thinning behavior for the entire range of the shear

strength under study (i.e. the apparent viscosity (τapp) decreases with increasing
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shear strength). At the time-dependent states, a time-averaged value is adopted.

Next, we detail the behavior in each of the four regions.

6.3.2.1. Region A. Figure 6.15 presents the rheological responses at γ = 0.0, λ =

1.0 (a point representing region-A). The first normal stress difference (N1) is positive

while the second stress difference (N2) is negative for all the values of LCP concentra-

tions (N=4.9,5.5,6.28,7.84) and the range of Pe investigated. In both states, LR and

FA, the first normal stress difference increases while the second normal stress differ-

ence decreases monotonically with Pe. The rate of increase (decrease ) of N1 (N2) in

LR (FA) phase is more quickly than that in FA (LR) phase. The phase transition

behavior is shown in the normal stress differences by a kinks at the transitional Pe.

The shear viscosity demonstrate shear thinning behavior in all cases. It enhances in

the FA phase. The shear stress is mostly constant in the LR state except that it

enhances near the transitional shear strength and then decays in the FA state.

6.3.2.2. Region B and C. In Figure 6.16, we present rheological responses at γ =

0.0817, λ = 0.5 (a point representing region-B) and at N=4.9,5.5,6.28,7.84. The first

normal stress difference N1 steadily attains a positive value (with a large positive

slope) in the LR phase (vice-versa for N2 with a negative slope). N1 changes it’s

sign from positive to negative in the periodic MK phase and back from negative to

positive in the FK phase (N2 changes its sign in exactly the opposite manner in both

of these states). In the FA phase, N1 is positive with a positive slope and N2 is

negative with a negative slope again. The transition from FK to FA is barely shown

in these rheological functions. The shear stress (τ12) increases and then reaches a

maximum in the LR state and then gradually decays towards a constant non-zero

value. The overall change in the shear stress is less than 10% of it’s value at Pe=0.0.

The shear viscosity (τapp) shows shear thinning behavior at a decaying rate which

changes continuously with respect to different orientational states.

To analyze the respective contribution of the viscous and elastic stress to the rhe-

ological functions, we plot in Figure 6.17 the elastic and the viscous normal stress
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(a) (b)

(c) (d)

(e) (f)

Figure 6.15. (a) 1st normal stress difference (N1 = τxx − τyy) (b) 2nd

normal stress difference (N2 = τyy−τzz) (c) 1st normal stress coefficient
(ψ1 = N1/Pe

2) (d) 2nd normal stress coefficient (ψ2 = N2/Pe
2) (e)

shear stress (τ12) (f) apparent viscosity: (τapp = τ12/Pe) at (γ=0.0, λ=
1.0) for different nematic concentrations (N).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.16. (a) 1st normal stress difference (N1 = τxx − τyy) (b) 2nd

normal stress difference (N2 = τyy−τzz) (c) 1st normal stress coefficient
(ψ1 = N1/Pe

2) (d) 2nd normal stress coefficient (ψ2 = N2/Pe
2) (e)

shear stress (τ12) (f) apparent viscosity: (τapp = τ12/Pe) at (γ=0.0817,
λ=0.5) for different nematic concentrations (N). In the steady OS-
phase, N1 decays linearly with a slope: -0.0292 (at N=5.5), -0.0293 (at
N=6.28), -0.0310 (at N=7.84); N2 rises at the rate:0.0015 (at N=5.5,
6.28), 0.0016 (at N=7.84) and τapp decays linearly at a rate: -0.3650 (at
N= 4.9), -0.3600 (at N=5.5), -0.3750 (at N=6.28, 7.84).
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differences, separately. We present these separate components in region (B) only to

highlight the general effect of these components on the global behavior of the normal

stress differences. The behavior of the elastic stresses is similar to the experimental

results given in [106, 41]. Clearly, due to the choice of our viscosity coefficients

(η = 0.01, ζ0 = 0.035), the elastic normal stress difference dominates in the entire

range of high shear strength region. It clearly show that the viscous contribution to

normal stress differences is exactly opposite to that of the elastic one.

(a) (b)

Figure 6.17. (a) 1st normal elastic and viscous stress differences
(N e

1 = τ exx − τ eyy, N
v
1 = τ vxx − τ vyy) (b) 2nd normal elastic and viscous

stress differences (N e
2 = τ eyy−τ ezz, N v

1 = τ vyy−τ vzz) at ( γ=0.0, λ=1.0) for
different nematic concentrations (N). The elastic stresses are marked
black and the viscous stresses marked blue.

The rheological responses in region C are qualitatively the same as in region B. The

difference between the states in this region and region B is that there exists an OS

state between MK and FK states. The numerical results show that N1 at the OS

state is negative while N2 is positive.

6.3.2.3. Region D. Figure 6.18 presents rheological responses at material param-

eters (γ = 0.16198, λ = 0.0093654), a point in region-D, and at nematic concen-

trations N = 4.9, 5.5, 6.28, 7.84 respectively. The absence of the steady LR phase

and the presence of the periodic MK phase in the sequence of phase transitions for

N = 5.5, 6.28, 7.84 in this region, implies that the normal stress differences ( N1, N2)
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acquires negative values immediately at very low value of shear (Pe ≤ 2.0). The

signs of both N1 and N2 are retained in the next phase, namely, the steady OS-

phase. There is again a change in the sign of N1 from negative to positive (vice-versa

for N2) in the periodic FK phase . Finally, in the FA-phase, N1 regains its positive

value while N2 obtains negative one. The scenario for the rheological functions at

N = 4.9 resembles the case discussed in region A.

The graphs of the normal stress coefficients show a rapid decay (ψ1 and ψ2) with

varying rate for different nematic concentrations (N=5.5, 6.28, 7.84) at small Pe. For

a fixed BLCP concentration in this group and at the end of the Pe range, the shear

stress (τ12) undergoes non- monotonic variation and decreases at Pe = 14 by about

50% of it’s value at Pe=0.0. The maximum value of τ12 is achieved at the end of the

OS phase. The apparent shear viscosity thins by about 400% of it’s initial value,

with varying rates of decay.

6.3.3. Choatic Regime. A chaotic motion is observed at (γ = 0.45,

λ = 0.0093654, N = 4.9), a point in Region (D) of the material parameter space.

The sequence of phase transitions here is: MK→CH→FK→FA. The critical shear

strength at which these transitions occur are at (Pe∗ = 1.15, 2.5, 4.6). Figure 6.19

presents the order parameters and the rheological response functions at these states

as Pe varies from 0 to 14. The values plotted are period-averaged quantities along

periodic states and a finite-time averaged quantities at the chaotic state, where the

time interval for the averaging is [5, 15].

The order parameters (s1, s2) increase slightly, while β1, β2 decay marginally in the

periodic and the steady states. The stress difference N1 and the stress coefficient ψ1

change signs from positive to negative in the periodic MK phase and back to positive

in the FK phase (vice-versa for the N2, ψ2). In the CH-phase, however, the signs

of both the stress differences and the stress coefficients fluctuate. The plots of shear

stress (τ12) and apparent viscosity (τapp) highlight a shear thinning behavior (except

in the chaotic regime), of the order of 300 % and 500 %, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.18. (a) 1st normal stress difference (N1 = τxx − τyy) (b) 2nd

normal stress difference (N2 = τyy−τzz) (c) 1st normal stress coefficient
(ψ1 = N1/Pe

2) (d) 2nd normal stress coefficient (ψ2 = N2/Pe
2) (e)

shear stress (τ12) (f) apparent viscosity: (τapp = τ12/Pe) at (γ=0.16198,
λ=0.0093654) for different nematic concentrations (N). In the steady
the OS-phase N1 increases linearly with a slope: 0.0011 (at N=4.9,
7.84), 0.0042 (at N=5.5), 0.002 (at N=6.28); N2 rises at the rate:0.0002
(at N=4.9, 7.84), 0.0008 (at N=5.5), 0.0004 (at N=6.28) and τapp decays
linearly at a rate: -0.3550 (at N=4.9, 5.5, 6.28), -0.3700 (at N=7.84).
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(a) (b)

(c) (d)

(e)

Figure 6.19. (a) The order parameters (s1, β1, s2, β2) (b) 1st and the
2nd normal stress difference (N1, N2) (c) 1st and the 2nd normal stress
coefficients (ψ1, ψ2) (d) shear stress (τ12) (f) apparent viscosity: (τapp =
τ12/Pe) at (γ = 0.45, λ = 0.0093654, N = 4.9. The shear window
1.15 ≤ Pe ≤ 2.5 represents the chaotic regime. The normal stress
differences are linear in the MK-phase with slopes: (-0.044,0.004) for
N1, N2 respectively.
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6.4. Conclusion

We have shown that the shear flow breaks the rotational symmetry in BLCPs produc-

ing two exotic out-of-plane time periodic motions along with the biaxial logrolling,

flow-aligning, out-of-plane steady state and the robust chaotic structure. Various flow

induced cascades are observed in the selected material parameter regions as the shear

strength enhances. The shear induced skewness between the second moments M and

N in all the dynamical states suggests a enhanced orientational correlation among

the molecular axes in the mesoscopic ensemble. The biaxial liquid crystal polymer

system demonstrates strong shear thinning behavior in all states and motions except

for the uncertain chaotic states. The rheological signature in the first normal stress

difference shows a robust positive value in the LR and FA state and possibly negative

value in the time-dependent states on average. We believe that these dynamical and

steady states serve as the genesis of the complex morphology in inhomogeneous flows

of BLCPs. The current study sets the launching point for the challenging study ahead

for the structure formation, evolution and dynamics of defects in the inhomogeneous

BLCPs
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Appendix A

Parameters and Coefficients

In this chapter we list all the time-dependent parameters and coefficients involved

in the rotational diffusion equation derived in Chapter 3. This chapter is organised

as follows. Section A.1 provides a list of time-dependent parameters used in the

excluded volume potential U . Section A.2 gives a series expansion of the each of the

terms involved in the rotational diffusion part. Finally, section A.3 list the series

expansion of the various terms involved in the flow part.

A.1. Time dependent parameters of U

The time-dependent coefficients Ai(t), Aij(t), Bij(t) of the excluded volume poten-

tial U in Eq.(130) are given as

A1(t) = 2α(bC200(t) + γa(C202(t) + C20−2(t)))

A2(t) = α(b(C220(t) + C2−20(t)) + γa(C222(t) + C22−2(t) + C2−22(t) + C2−2−2(t)))

A3(t) = 2α(γaC200(t) + λc(C202(t) + C20−2(t)))

A4(t) = α(γa(C220(t) + C2−20(t)) + λc(C222(t) + C22−2(t) + C2−22(t) + C2−2−2(t)))

A12(t) = −α(b(C2−20(t)− C220(t)) + γa(C2−2−2(t)− C222(t) + C2−22(t)− C22−2(t)))

A13(t) = α(b(C2−10(t)− C210(t)) + γa(C2−12(t)− C21−2(t)− C212(t) + C2−1−2(t)))

A23(t) = 2α(
√

2
3
γa− b

2
− λc

3
)(C2−10(t) + C210(t))

B12(t) = −α(γa(C2−20(t)− C220(t)) + λc(C2−2−2(t)− C222(t) + C2−22(t)− C22−2(t)

B13(t) = α(γa(C2−10(t)− C210(t)) + λc(C2−12(t)− C21−2(t)− C212(t) + C2−1−2(t)))

(a =
2π√
15
, b =

2π

3

√
2

5
, c = π

√
2

5
)

(267)
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A.2. Expansion Coefficients for the Diffusion Operator: Γ̂

In this section, we present the full derivation of each of the terms in the rotational

diffusion operator in the order as they appear in Eq.(136)

(∇2f) = [L
′
(L
′
+ 1) + n

′2
(η − 1)]CL′ ,m′ ,n′ (t) (268)

ε

2
(L2

+f) =
ε

2
(
√

[L′(L′ + 1)− n′(n′ − 1)]
√

[L′(L′ + 1)− (n′ − 1)(n′ − 2)])

CL′,m′,n′−2(t)
(269)

ε

2
(L2
−f) =

ε

2
(
√

[L′(L′ + 1)− n′(n′ + 1)]
√

[L′(L′ + 1)− (n′ + 1)(n′ + 2)])

CL′,m′,n′+2(t)
(270)

(∇2U)f =
∑L

′
+2

L=|L′−2|

√
2L+1
2L′+1

{ 6A1C(2, L, L
′
, 0,m

′
)C(2, L, L

′
, 0, n

′
)CL,m′ ,n′ (t)

+6(A2 − A12)C(2, L, L
′
, 2,m

′ − 2)C(2, L, L
′
, 0, n

′
)CL,m′−2,n′ (t)

+6(A2 + A12)C(2, L, L
′
,−2,m

′
+ 2)C(2, L, L

′
, 0, n

′
)CL,m′+2,n′ (t)

+6(A23 − A13)C(2, L, L
′
, 1,m

′ − 1)C(2, L, L
′
, 0, n

′
)CL,m′−1,n′ (t)

+6(A23 + A13)C(2, L, L
′
,−1,m

′
+ 1)C(2, L, L

′
, 0, n

′
)CL,m′+1,n′ (t)

+2A3(1 + 2η)C(2, L, L
′
, 0,m

′
)C(2, L, L

′
, 2, n

′ − 2)CL,m′ ,n′−2(t)

+2A3(1 + 2η)C(2, L, L
′
, 0,m

′
)C(2, L, L

′
,−2, n

′
+ 2)CL,m′ ,n′+2(t)

+2(A4 −B12)(1 + 2η)C(2, L, L
′
, 2,m

′ − 2)C(2, L, L
′
, 2, n

′ − 2)

CL,m′−2,n′−2(t)

+2(A4 +B12)(1 + 2η)C(2, L, L
′
,−2,m

′
+ 2)C(2, L, L

′
,−2, n

′
+ 2)

CL,m′+2,n′+2(t)

+2(A4 −B12)(1 + 2η)C(2, L, L
′
, 2,m

′ − 2)C(2, L, L
′
,−2, n

′
+ 2)

CL,m′−2,n′+2(t)

+2(A4 +B12)(1 + 2η)C(2, L, L
′
,−2,m

′
+ 2)C(2, L, L

′
, 2, n

′ − 2)

CL,m′+2,n′−2(t)
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−2B13(1 + 2η)C(2, L, L
′
, 1,m

′ − 1)C(2, L, L
′
, 2, n

′ − 2)CL,m′−1,n′−2(t)

+2B13(1 + 2η)C(2, L, L
′
,−1,m

′
+ 1)C(2, L, L

′
,−2, n

′
+ 2)CL,m′+1,n′+2(t)

−2B13(1 + 2η)C(2, L, L
′
, 1,m

′ − 1)C(2, L, L
′
,−2, n

′
+ 2)CL,m′−1,n′+2(t)

+2B13(1 + 2η)C(2, L, L
′
,−1,m

′
+ 1)C(2, L, L

′
, 2, n

′ − 2)CL,m′+1,n′−2(t)}
(271)

η(LmU)(Lmf) = 2η
∑L

′
+2

L=|L′−2|

√
2L+1
2L′+1

{

A3(n′ − 2)C(2, L, L
′
, 0,m

′
)C(2, L, L

′
, 2, n

′ − 2)CL,m′ ,n′−2(t)

−A3(n′ + 2)C(2, L, L
′
, 0,m

′
)C(2, L, L

′
,−2, n

′
+ 2)CL,m′ ,n′+2(t)

+(A4 −B12)(n′ − 2)C(2, L, L
′
, 2,m

′ − 2)C(2, L, L
′
, 2, n

′ − 2)

CL,m′−2,n′−2(t)

−(A4 −B12)(n′ + 2)C(2, L, L
′
,−2,m

′
+ 2)C(2, L, L

′
,−2, n

′
+ 2)

CL,m′+2,n′+2(t)

−(A4 +B12)(n′ + 2)C(2, L, L
′
, 2,m

′ − 2)C(2, L, L
′
,−2, n

′
+ 2)

CL,m′−2,n′+2(t)

+(A4 +B12)(n′ − 2)C(2, L, L
′
,−2,m

′
+ 2)C(2, L, L

′
, 2, n

′ − 2)

CL,m′+2,n′−2(t)

−B13(n′ − 2)C(2, L, L
′
, 1,m

′ − 1)C(2, L, L
′
, 2, n

′ − 2)CL,m′−1,n′−2(t)

+B13(n′ + 2)C(2, L, L
′
,−1,m

′
+ 1)C(2, L, L

′
,−2, n

′
+ 2)CL,m′+1,n′+2(t)

−B13(n′ + 2)C(2, L, L
′
, 1,m

′ − 1)C(2, L, L
′
,−2, n

′
+ 2)CL,m′−1,n′+2(t)

+B13(n′ − 2)C(2, L, L
′
,−1,m

′
+ 1)C(2, L, L

′
, 2, n

′ − 2)CL,m′+1,n′−2(t)}
(272)

ε
2
(L+U)(L+f) = ε

2

∑L
′
+2

L=|L′−2|

√
2L+1
2L′+1

√
L(L+ 1)− (n′ − 2)(n′ − 1) {

√
6A1C(2, L, L

′
, 0,m

′
)C(2, L, L

′
, 1, n

′ − 1)CL,m′ ,n′−2(t)
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+
√

6(A2 − A12)C(2, L, L
′
, 2,m

′ − 2)C(2, L, L
′
, 1, n

′ − 1)

CL,m′−2,n′−2(t)

+
√

6(A2 + A12)C(2, L, L
′
,−2,m

′
+ 2)C(2, L, L

′
, 1, n

′ − 1)

CL,m′+2,n′−2(t)

+
√

6(A23 − A13)C(2, L, L
′
, 1,m

′ − 1)C(2, L, L
′
, 1, n

′ − 1)

CL,m′−1,n′−2(t)

+
√

6(A23 + A13)C(2, L, L
′
,−1,m

′
+ 1)C(2, L, L

′
, 1, n

′ − 1)

CL,m′+1,n′−2(t)}

+
√
L(L+ 1)− n′(n′ + 1) { 2A3C(2, L, L

′
, 0,m

′
)

C(2, L, L
′
,−1, n

′
+ 1)CL,m′ ,n′ (t)

+2(A4 −B12)C(2, L, L
′
, 2,m

′ − 2)C(2, L, L
′
,−1, n

′
+ 1)CL,m′−2,n′ (t)

+2(A4 +B12)C(2, L, L
′
,−2,m

′
+ 2)C(2, L, L

′
,−1, n

′
+ 1)CL,m′+2,n′ (t)

−2B13C(2, L, L
′
, 1,m

′ − 1)C(2, L, L
′
,−1, n

′
+ 1)CL,m′−1,n′ (t)

+2B13C(2, L, L
′
,−1,m

′
+ 1)C(2, L, L

′
,−1, n

′
+ 1)CL,m′+1,n′ (t)}

(273)

1
2
(L+U)(L−f) = 1

2

∑L
′
+2

L=|L′−2|

√
2L+1
2L′+1

√
L(L+ 1)− n′(n′ − 1) {

√
6A1C(2, L, L

′
, 0,m

′
)C(2, L, L

′
, 1, n

′ − 1)CL,m′ ,n′ (t)

+
√

6(A2 − A12)C(2, L, L
′
, 2,m

′ − 2)C(2, L, L
′
, 1, n

′ − 1)CL,m′−2,n′ (t)

+
√

6(A2 + A12)C(2, L, L
′
,−2,m

′
+ 2)C(2, L, L

′
, 1, n

′ − 1)CL,m′+2,n′ (t)

+
√

6(A23 − A13)C(2, L, L
′
, 1,m

′ − 1)C(2, L, L
′
, 1, n

′ − 1)CL,m′−1,n′ (t)

+
√

6(A23 + A13)C(2, L, L
′
,−1,m

′
+ 1)C(2, L, L

′
, 1, n

′ − 1)CL,m′+1,n′ (t)}

+
√
L(L+ 1)− (n′ + 2)(n′ + 1) { 2A3C(2, L, L

′
, 0,m

′
)

C(2, L, L
′
,−1, n

′
+ 1)CL,m′ ,n′+2(t)
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+2(A4 −B12)C(2, L, L
′
, 2,m

′ − 2)C(2, L, L
′
,−1, n

′
+ 1)CL,m′−2,n′+2(t)

+2(A4 +B12)C(2, L, L
′
,−2,m

′
+ 2)C(2, L, L

′
,−1, n

′
+ 1)CL,m′+2,n′+2(t)

−2B13C(2, L, L
′
, 1,m

′ − 1)C(2, L, L
′
,−1, n

′
+ 1)CL,m′−1,n′+2(t)

+2B13C(2, L, L
′
,−1,m

′
+ 1)C(2, L, L

′
,−1, n

′
+ 1)CL,m′+1,n′+2(t)}

(274)

ε
2
(L−U)(L−f) = ε

2

∑L
′
+2

L=|L′−2|

√
2L+1
2L′+1

√
L(L+ 1)− (n′ + 2)(n′ + 1) {

√
6A1C(2, L, L

′
, 0,m

′
)C(2, L, L

′
,−1, n

′
+ 1)CL,m′ ,n′+2(t)

+
√

6(A2 − A12)C(2, L, L
′
, 2,m

′ − 2)C(2, L, L
′
,−1, n

′
+ 1)

CL,m′−2,n′+2(t)

+
√

6(A2 + A12)C(2, L, L
′
,−2,m

′
+ 2)C(2, L, L

′
,−1, n

′
+ 1)

CL,m′+2,n′+2(t)

+
√

6(A23 − A13)C(2, L, L
′
, 1,m

′ − 1)C(2, L, L
′
,−1, n

′
+ 1)

CL,m′−1,n′+2(t)

+
√

6(A23 + A13)C(2, L, L
′
,−1,m

′
+ 1)C(2, L, L

′
,−1, n

′
+ 1)

CL,m′+1,n′+2(t)}

+
√
L(L+ 1)− n′(n′ − 1) { 2A3C(2, L, L

′
, 0,m

′
)

C(2, L, L
′
, 1, n

′ − 1)CL,m′ ,n′ (t)

+2(A4 −B12)C(2, L, L
′
, 2,m

′ − 2)C(2, L, L
′
, 1, n

′ − 1)

CL,m′−2,n′ (t)

+2(A4 +B12)C(2, L, L
′
,−2,m

′
+ 2)C(2, L, L

′
, 1, n

′ − 1)

CL,m′+2,n′ (t)

−2B13C(2, L, L
′
, 1,m

′ − 1)C(2, L, L
′
, 1, n

′ − 1)CL,m′−1,n′ (t)

+2B13C(2, L, L
′
,−1,m

′
+ 1)C(2, L, L

′
, 1, n

′ − 1)CL,m′+1,n′ (t)}
(275)
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1
2
(L−U)(L+f) = 1

2

∑L
′
+2

L=|L′−2|

√
2L+1
2L′+1

√
L(L+ 1)− n′(n′ + 1) {

√
6A1C(2, L, L

′
, 0,m

′
)C(2, L, L

′
,−1, n

′
+ 1)CL,m′ ,n′ (t)

+
√

6(A2 − A12)C(2, L, L
′
, 2,m

′ − 2)C(2, L, L
′
,−1, n

′
+ 1)

CL,m′−2,n′ (t)

+
√

6(A2 + A12)C(2, L, L
′
,−2,m

′
+ 2)C(2, L, L

′
,−1, n

′
+ 1)

CL,m′+2,n′ (t)

+
√

6(A23 − A13)C(2, L, L
′
, 1,m

′ − 1)C(2, L, L
′
,−1, n

′
+ 1)

CL,m′−1,n′ (t)

+
√

6(A23 + A13)C(2, L, L
′
,−1,m

′
+ 1)C(2, L, L

′
,−1, n

′
+ 1)

CL,m′+1,n′ (t)}

+
√
L(L+ 1)− (n′ − 2)(n′ − 1) { 2A3C(2, L, L

′
, 0,m

′
)

C(2, L, L
′
, 1, n

′ − 1)CL,m′ ,n′−2(t)

+2(A4 −B12)C(2, L, L
′
, 2,m

′ − 2)C(2, L, L
′
, 1, n

′ − 1)

CL,m′−2,n′−2(t)

+2(A4 +B12)C(2, L, L
′
,−2,m

′
+ 2)C(2, L, L

′
, 1, n

′ − 1)

CL,m′+2,n′−2(t)

−2B13C(2, L, L
′
, 1,m

′ − 1)C(2, L, L
′
, 1, n

′ − 1)CL,m′−1,n′−2(t)

+2B13C(2, L, L
′
,−1,m

′
+ 1)C(2, L, L

′
, 1, n

′ − 1)CL,m′+1,n′−2(t)}
(276)

where the time-dependent parameters used in the series expansion above are as follows

P1 =
√

3
2
A1 + εA3, P2a =

√
3
2
ε(A2 − A12) + (A4 −B12),

P2b =
√

3
2
ε(A2 + A12) + (A4 +B12), P3 =

√
3
2
εA1 + A3,

P4a =
√

3
2
(A2 − A12) + ε(A4 −B12), P4b =

√
3
2
(A2 + A12) + ε(A4 +B12),

P5 =
√

3
2
ε(A23 − A13)−B13, P6 =

√
3
2
ε(A23 + A13) +B13,
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P7 =
√

3
2
(A23 − A13)− εB13, P8 =

√
3
2
(A23 + A13) + εB13,

D1 = 2
√

6P1, D2a = 2
√

6P4a, D2b = 2
√

6P4b, D3 = 2P3 + 4ηA3,

D4a = 2P2a + 4η(A4 −B12), D4b = 2P2b + 4η(A4 +B12)

D5 = 2P5 − 4ηB13, D6 = 2P6 + 4ηB13

(277)

A.3. Expansion Coefficients of the flow operator

In this section, we present the full derivation of each of the terms in the flow operator

in the order as they appear in Eq.(145):

Lm(D1
00f) =

∑L
′
+1

L=|L′−1| n
′
√

2L+1
2L′+1

C(1, L, L′, 0,m′)C(1, L, L′, 0, n′)CL,m′,n′(t)

L+(D1
0−1f) =

∑L
′
+1

L=|L′−1|

√
L′(L′ + 1)− n′(n′ − 1)

√
2L+1
2L′+1

C(1, L, L′, 0,m′)

C(1, L, L′,−1, n′)CL,m′,n′(t)

L−(D1
01f) =

∑L
′
+1

L=|L′−1|

√
L′(L′ + 1)− n′(n′ + 1)

√
2L+1
2L′+1

C(1, L, L′, 0,m′)

C(1, L, L′, 1, n′)CL,m′,n′(t)

L+[ηc+b(D
2
21 −D2

2−1)f ] = ηc+b
∑L

′
+2

L=|L′−2|

√
2L+1
2L′+1

C(2, L, L′, 2,m′ − 2)√
L′(L′ + 1)− n′(n′ − 1){C(2, L, L′, 1, n′ − 2)CL,m′−2,n′−2(t)−

C(2, L, L′,−1, n′)CL,m′−2,n′(t)}

L+[ηc−b(D
2
−21 −D2

−2−1)f ] = ηc−b
∑L

′
+2

L=|L′−2|

√
2L+1
2L′+1

C(2, L, L′,−2,m′ + 2)√
L′(L′ + 1)− n′(n′ − 1){C(2, L, L′, 1, n′ − 2)CL,m′+2,n′−2(t)−

C(2, L, L′,−1, n′)CL,m′+2,n′(t)}

L−[ηc−b(D
2
21 −D2

2−1)f ] = ηc−b
∑L

′
+2

L=|L′−2|

√
2L+1
2L′+1

C(2, L, L′, 2,m′ − 2)√
L′(L′ + 1)− n′(n′ + 1){C(2, L, L′, 1, n′)CL,m′−2,n′(t)−

C(2, L, L′,−1, n′ + 2)CL,m′−2,n′+2(t)}

L−[ηc+b(D
2
−21 −D2

−2−1)f ] = ηc+b
∑L

′
+2

L=|L′−2|

√
2L+1
2L′+1

C(2, L, L′,−2,m′ + 2)
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√
L′(L′ + 1)− n′(n′ + 1){C(2, L, L′, 1, n′)CL,m′+2,n′(t)−

C(2, L, L′,−1, n′ + 2)CL,m′+2,n′+2(t)}

Lm(D2
2−2f) =

∑L
′
+2

L=|L′−2| n
′
√

2L+1
2L′+1

C(2, L, L′, 2,m′ − 2)C(2, L, L′,−2, n′ + 2)

CL,m′−2,n′+2(t)

Lm(D2
−2−2f) =

∑L
′
+2

L=|L′−2| n
′
√

2L+1
2L′+1

C(2, L, L′,−2,m′ + 2)

C(2, L, L′,−2, n′ + 2)CL,m′+2,n′+2(t)

Lm(D2
−22f) =

∑L
′
+2

L=|L′−2| n
′
√

2L+1
2L′+1

C(2, L, L′,−2,m′ + 2)

C(2, L, L′, 2, n′ − 2)CL,m′+2,n′−2(t)

Lm(D2
22f) =

∑L
′
+2

L=|L′−2| n
′
√

2L+1
2L′+1

C(2, L, L′, 2,m′ − 2)C(2, L, L′, 2, n′ − 2)

CL,m′−2,n′−2(t)

(278)
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Appendix B

Moment Equations

Moment equations provides an alternative approach to investigate the flow-phase

behavior of the a mesoscopic system liquid crystals. Although compared with the

kinetic equation, this approach considerably reduces the number of coupled partial

differential equations; we are left with a choice of coming up with a suitable moment

closure equations to reduce the higher moments [75, 76, 74, 73]. The numerical

solution is very sensitive to the choice of these closure equations. Nevertheless, we

provide an overview of this approach, should the need arise to use them in future.

In section B.1, we describe all the tools and lemmas necessary to understand the

derivation. Finally, in section B.2, we derive and list these set of equations.

B.1. Calculus Lemmas in SO3

Let (m,n,k) be the unit vectors for an arbitrary rotation in 3-D space with respect

to a fixed frame(x,y,z). Eq.(112) provides a relation between these two frames in

terms of the euler angles (α, β, γ). The angular momentum operator (w.r.t. this fixed

frame ) is:

L = mLm + nLn + kLk (279)

where

Lm = i ∂
∂γ
,

Ln = i(cos γ cot β ∂
∂γ

+ sin γ ∂
∂β
− cos γ

sinβ
∂
∂α

),

Lk = i(− sin γ cot β ∂
∂γ

+ cos γ ∂
∂β

+ sin γ
sinβ

∂
∂α

)

(280)

The differentiation properties of angular momentum operator L is given by:
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Lp(q) = i [p × q ] where(p, q , r) = (m,n,k) (281)

Lemma 1: For two scalar functions f and g

∫
(Lif(Ω))g(Ω)dΩ = −

∫
f(Ω)Lig(Ω)dΩ i = (m,n, k) (282)

where
∫

dΩ =
∫ π

0
sin βdβ

∫ 2π

0
dα
∫ 2π

0
dγ

Lemma 2: For a scalar and a vector function g and F

∫
gL · FdΩ = −

∫
F · LgdΩ (283)

Lemma 3: For an m
′
-th order tensor A and an n

′
-th order tensor B

∫
Ai1...im′LkBj1...k...jn′

dΩ = −
∫

LkAi1...im′Bj1...k...jn′
dΩ (284)

B.2. Moment equations

Using the calculus lemmas and Eq.(119) we arrive at the moment equations as follows.

From Eq.(127), the excluded volume potential of a biaxial molecule is given by:

U = −3N
2
{M : mm + γ(M : nn +N : mm) + λN : nn}

= −3N

2
{< mamb > mamb + γ(< mamb > nanb+ < nanb > mamb)+

λ < nanb > nanb}

where (γ, λ) are the material parameters.

The application of the angular momentum operator L on the excluded volume po-

tential gives:
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Ln(U0) = −3Nι
2
{< mamb > (−kamb −makb) + γ < nanb > (−kamb −makb)

= 3Nι
2
{(< mamb > +γ < makb >)(kamb +makb)}

= 3N i
2
{(M + γN) : (km + mk)}

(285)

Similarly:

Lk(U0) = −3N i

2
{((1− γ)M + (γ − λ)N) : (mn + nm)} (286)

Lm(U0) = −3Nι

2
{(γM + λN) : (kn + nk)} (287)

Using Eq.(119) and the relations above, the moment equations are derived as follows:

Ṁ =
∫ ∫ ∫

Ω
mmL∗ · (DrLµf)−

∫ ∫ ∫
Ω

mmL∗ · (gf) Dr = diag(D1, D2, D3)

= I + II

I =
∫ ∫ ∫

−L∗(mm) · (DrLµf)

=
∫ ∫ ∫

−{L∗i (mα)mβ +mαL
∗
i (mβ)}Di{Lif + Li(U)f}

= −ι[
∫ ∫ ∫

{kαmβ +mαkβ}D2{Lnf + Ln(U)f} −
∫ ∫ ∫

{nαmβ +mαnβ}

D3{Lkf + Lk(U)f}]

= −ι[−
∫ ∫ ∫

D2{Ln(kαmβ +mαkβ)}f +
∫ ∫ ∫

D3{Lk(nαmβ +mαnβ)}f

+
∫ ∫ ∫

D2{kαmβ +mαkβ}Ln(U)f −
∫ ∫ ∫

D3{nαmβ +mαnβ}Lk(U)f ]

=
∫ ∫ ∫

2D2(kαkβ −mαmβ)f +
∫ ∫ ∫

2D3(nαnβ −mαmβ)f+

−ι[
∫ ∫ ∫

Ω
D2{kαmβ +mαkβ}Ln(U)f −

∫ ∫ ∫
Ω
D3{nαmβ +mαnβ}Lk(U)f ]

= 2D2K+2D3N−2(D2+D3)M+ 3N
2
D2(M+γN) : (< kmkm > + < mkkm > +

< kmmk > + < mkmk >) + 3N
2
D3((1− γ)M + (γ − λ)N) : (< nmnm > +
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< mnnm > + < nmmn > + < mnmn >)

II =
∫ ∫ ∫

Ω
L∗(mm) · (gf)

=
∫ ∫ ∫

{L∗i (mα)mβ +mαL
∗
i (mβ)}gif

= −
∫ ∫ ∫

{kαmβ +mαkβ}gnf +
∫ ∫ ∫

Ω
{nαmβ +mαnβ}gkf

= − K
a2+c2

: (c2 < mkkm > −a2 < kmkm > +c2 < mkmk > −a2 < kmmk >)

+ K
a2+b2

: (a2 < nmmn > −b2 < mnmn > +a2 < nmnm > −b2 < mnnm >)

The complete system of equations is given by:

Ṁ = 2D2K + 2D3N− 2(D2 +D3)M

+3N
2
D2(M + γN) : (< kmkm > + < mkkm > + < kmmk > + < mkmk >)

+3N
2
D3((1− γ)M + (γ − λ)N) : (< nmnm > + < mnnm > + < nmmn > +

< mnmn >)

− K
a2+c2

: (c2 < mkkm > −a2 < kmkm > +c2 < mkmk > −a2 < kmmk >)

+ K
a2+b2

: (a2 < nmmn > −b2 < mnmn > +a2 < nmnm > −b2 < mnnm >)

(288)

Ṅ = 2D1K + 2D3M− 2(D1 +D3)N

+3N
2
D1(γM + λN) : (< knnk > + < knkn > + < nkkn > + < nknk >)

−3N
2
D3((1− γ)M + (γ − λ)N) : (< nmnm > + < mnnm > + < nmmn > +

< mnmn >)

+ K
b2+c2

: (b2 < nkkn > −c2 < knkn > +b2 < nknk > −c2 < knnk >)

− K
a2+b2

: (a2 < nmmn > −b2 < mnmn > +a2 < nmnm > −b2 < mnnm >)

(289)
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K̇ = 2D1N + 2D2M− 2(D1 +D2)K

−3N
2
D1(γM + λN) : (< knnk > + < knkn > + < nkkn > + < nknk >)

−3N
2
D2(M + γN) : (< kmkm > + < mkkm > + < kmmk > + < mkmk >)

− K
b2+c2

: (b2 < nkkn > −c2 < knkn > +b2 < nknk > −c2 < knnk >)

+ K
a2+c2

: (c2 < mkkm > −a2 < kmkm > +c2 < mkmk > −a2 < kmmk >)

(290)

˙< km > = −(D1 + 2D2 +D3) < km > −2D2 < mk >

−3N
2
D1(γM + λN) : (< knnm > + < nknm >)

+3N
2
D2(M + γN) : (< kmkk > + < mkkk > − < kmmm > − < mkmm >)

+3N
2
D3((1− γ)M + (γ − λ)N) : (< mnkn > + < nmkn >)

− K
b2+c2

: (b2 < nknm > −c2 < knnm >)− K
a2+b2

: (a2 < nmkn > −b2 < mnkn >)

+ K
a2+c2

: (c2 < mkmm > −a2 < kmmm > −c2 < mkkk > +a2 < kmkk >)

(291)

˙< mn > = −(D1 +D2 + 2D3) < mn > −2D3 < nm >

+3N
2
D1(γM + λN) : (< knmk > + < nkmk >) + 3N

2
D2(M + γN) :

(< kmkn > + < mkkn >)

+3N
2
D3((1− γ)M + (γ − λ)N) : (< mnnn > + < nmnn > − < mnmm > −

< nmmm >)

+ K
b2+c2

: (b2 < nkmk > −c2 < knmk >)− K
a2+c2

: (c2 < mkkn > −a2 < kmkn >)

+ K
a2+b2

: (a2 < nmnn > −b2 < mnnn > −a2 < nmmm > +b2 < mnmm >)

(292)
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˙< nk > = −(2D1 +D2 +D3) < nk > −2D1 < kn > −3N
2
D2(M + γN) :

(< kmnm > + < mknm >)

+3N
2
D1(γM + λN) : (< knkk > + < nkkk > − < knnn > − < nknn >)

−3N
2
D3((1− γ)M + (γ − λ)N) : (< mnmk > + < nmmk >)

+ K
b2+c2

: (b2 < nkkk > −c2 < knkk > −b2 < nknn > +c2 < knnn >) + K
a2+c2

: (c2

< mknm > −a2 < kmnm >)− K
a2+b2

: (a2 < nmmk > −b2 < mnmk >)

(293)

˙< mk > = −(D1 + 2D2 +D3) < mk > −2D2 < km > −3N
2
D1(γM + λN) :

(< knmn > + < nkmn >)

+3N
2
D2(M + γN) : (< kmkk > + < mkkk > − < kmmm > − < mkmm >)

+3N
2
D3((1− γ)M + (γ − λ)N) : (< mnnk > + < nmnk >)

− K
b2+c2

: (b2 < nkmn > −c2 < knmn >)− K
a2+b2

: (a2 < nmnk > −b2 < mnnk >)

+ K
a2+c2

: (c2 < mkmm > −a2 < kmmm > −c2 < mkkk > +a2 < kmkk >)

(294)

˙< nm > = −(D1 +D2 + 2D3) < nm > −2D3 < mn >

+3N
2
D1(γM + λN) : (< knkm > + < nkkm >) + 3N

2
D2(M + γN) :

(< kmnk > + < mknk >)

+3N
2
D3((1− γ)M + (γ − λ)N) : (< mnnn > + < nmnn > − < mnmm > −

< nmmm >)

+ K
b2+c2

: (b2 < nkkm > −c2 < knkm >)− K
a2+c2

: (c2 < mknk > −a2 < kmnk >)

+ K
a2+b2

: (a2 < nmnn > −b2 < mnnn > −a2 < nmmm > +b2 < mnmm >)

(295)
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˙< kn > = −(2D1 +D2 +D3) < kn > −2D1 < nk >

+3N
2
D1(γM + λN) : (< knkk > + < nkkk > − < knnn > − < nknn >)

−3N
2
D2(M + γN) : (< kmmn > + < mkmn >)

−3N
2
D3((1− γ)M + (γ − λ)N) : (< mnkm > + < nmkm >)

+ K
b2+c2

: (b2 < nkkk > −c2 < knkk > −b2 < nknn > +c2 < knnn >) + K
a2+c2

: (c2

< mkmn > −a2 < kmmn >)− K
a2+b2

: (a2 < nmkm > −b2 < mnkm >)

(296)
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Appendix C

Viscous and Elastic Stresses

The macroscopic stress tensor consists of three parts: the isotropic pressure, the

extra elastic stress and the extra viscous stress. The elastic stress is due to the BLCP

molecular interaction while the viscous stress is the result of the interaction between

BLCP molecules and solvent molecules as well as among the solvent molecules. They

are derived separately. In this chapter, we derive in detail the viscous and the elastic

stresses involved in the shear induced polymeric flows. Section C.1 gives the detailed

series expansion of the viscous stress components. Next, in section C.2 we derive the

elastic stresses using the virtual work principle given in [85]. Finally, in section C.3,

we provide the series expansion of the elastic stress components.

C.1. Viscous Stress

The viscous stress for biaxial LCPs follows from the work of Batchelor [96] and

Roscoe [46] on ellipsoidal suspensions in viscous solvent

τ v = 2ηD + 3νkTζ0B : D (297)

where η is the viscosity of the solvent, B is the fourth order strain rate concentration

tensor, D is the second order strain rate tensor, given by D = 1
2
(∇v +∇vT ) and ζ0

is a shape dependent friction coefficient proportional to the volume of the ellipsoidal

suspension. Replacing the volume average by the ensemble average in [96], it follows
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that

τ v = 2ηD + νkTζ0[ 4
3(J1J2+J2J3+J1J3)

((J1〈mmmm〉+ J2〈nnnn〉+ J3〈kkkk〉) : D−

I
3
(J1〈mm〉+ J2〈nn〉+ J3〈kk〉) : D) + 2

3
( 1
I1

(〈nk + kn〉)(〈nk + kn〉) : D+

1
I2

(〈mn + nm〉)(〈mn + nm〉) : D + 1
I3

(〈mk + km〉)(〈mk + km〉) : D)].

(298)

Here, the shape constants (Ji, Ii), i = 1, 2, 3 in Eq. 298 are:

I1 =
∫∞

0
abc(a2+c2)dλ

∆(c2+λ)(a2+λ)
, I2 =

∫∞
0

abc(b2+a2)dλ
∆(b2+λ)(a2+λ)

, I3 =
∫∞

0
abc(b2+c2)dλ

∆(b2+λ)(c2+λ)
,

J1 =
∫∞

0
abcλdλ

∆(a2+λ)(c2+λ)
, J2 =

∫∞
0

abcλdλ
∆(a2+λ)(b2+λ)

, J3 =
∫∞

0
abcλdλ

∆(b2+λ)(c2+λ)

(299)

and ∆2 = (a2 + λ)(b2 + λ)(c2 + λ). The series expansion of each of the normal

components (τ vii) and the viscous shear component (τ v12) is as follows:
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τ v11 = 4
3
kBTζ0ν[ J1

4J {

−4π2

3ι
[ 2
35

√
2
3
(C2−20(t)− C220(t)) + 1
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√
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(300)
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τ v22 = 4
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kBTζ0ν[ J1
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√
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(C20−2(t) + C202(t)) + 3
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√
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C2−2−2(t) + C22−2(t)− C2−22(t))− 6
7
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2
(C444(t)− C4−44(t) + C44−4(t)− C4−4−4(t)) + 3√

70
(C404(t)− C40−4(t))
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√
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√
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(C402(t) + C40−2(t)) + 3√
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2
√
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√
2
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+ 8
I1ι

(π
2

5
)
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[C2−22(t)− C22−2(t) + C222(t)− C2−2−2(t) +

√
2
3
(C202(t)− C20−2(t))]

[C2−2−2(t) + C222(t)− C22−2(t)− C2−22(t)] + 8
I2ι

(π
2

5
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2
[C2−2−1(t) + C2−21(t)−

C221(t)− C22−1(t) +
√

2
3
(C20−1(t)− C201(t))][C221(t) + C2−2−1(t) + C22−1(t)+
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I3ι
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2
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2
[C22−1(t) + C2−21(t) + C2−2−1(t) + C221(t) +

√
2
3
(C20−1(t)+

C201(t))][C221(t)− C2−2−1(t) + C2−21(t)− C22−1(t)]

(301)

τ v33 = 4
3
kBTζ0ν[ J1

4J {
8π2

3ι
[ 2
35

√
2
3
(C2−20(t)− C220(t)) + 1

27
(C420(t)− C4−20(t))]} + J2

4J {
2π2

27ι
[−36

35
(C222(t)
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7
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+36
35

√
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√
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(C42−4(t) + C424(t)−
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27ι
[36
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+3
7
(C422(t)− C4−2−2(t) + C42−2(t)− C4−22(t)) + 36

35

√
2
3
(C220(t)− C2−20(t))

+0.407(C420(t)− C4−20(t)) + 3
2
√

7
(C42−4(t) + C424(t)− C4−2−4(t)− C4−24(t))]}
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I1ι
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(π

2

5
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I2ι

√
2
3
(π

2

5
)
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I3ι

√
2
3
(π

2

5
)
2
{C20−1(t) + C201(t)}{C221(t)− C2−2−1(t) + C2−21(t)− C22−1(t)}]

(302)

The shear component of the viscous stress is given by:

τ v12 = ην + 2
3
kBTζ0ν[2J1

4J {
8π2

9
[− 1√

70
(

C440(t) + C4−40(t)) + 1
35
C400(t)− 6

35
C200(t) + 6

5
C000(t)]} + 2J2

4J {−
π2

9
[ 3√

70
(C440(t)

+C4−40(t))− 6C000(t)− 3
35
C400(t)− 24

35
C200(t) + 1

2
(C444(t) + C4−4−4(t) + C44−4(t)

+C4−44(t))− 2√
70

(C404(t) + C40−4(t))− 1√
7
(C442(t) + C44−2(t) + C4−4−2(t)

+C4−42(t)) + 36
35

√
2
3
(C20−2(t) + C202(t)) + 1

7

√
2
5
(C40−2(t) + C402(t))] + 2J3

4J {−
π2

9
[

3√
70

(C440(t) + C4−40(t))− 6C000(t)− 3
35
C400(t)− 24

35
C200(t) + 1

2
(C444(t) + C4−4−4(t)

+C44−4(t) + C4−44(t))− 2√
70

(C404(t) + C40−4(t)) + 1√
7
(C442(t) + C44−2(t)+

C4−4−2(t) + C4−42(t))− 36
35

√
2
3
(C20−2(t) + C202(t))− 1

7

√
2
5
(C40−2(t) + C402(t))] +

16
I1

(π
2

5
)
2
[C2−2−2(t) + C222(t)− C22−2(t)− C2−22(t)]2 − 16

I2
(π

2

5
)
2
[C221(t) + C2−2−1(t)

+C2−21(t) + C22−1(t)]2 + 16
I3

(π
2

5
)
2
[C221(t)− C2−2−1(t) + C2−21(t)− C22−1(t)]2 ]

(303)

C.2. Elastic Stress

The extra elastic stress tensor is calculated by an extended virtual work principle [85]

. Let δu = ∇vδt be the virtual deformation of the macroscopic system of biaxial lcps

[23, 113]. Then the virtual work principle states that the variation of the free energy

density equals the work done on the material volume:

∫
δAdx =

∫
[τe : ∇v − v · Fe]δtdx (304)
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where τe is the elastic stress and Fe is the elastic body force. The variation of the

free energy is expressed as the rate of change of the PDF f(Ω, t)

δA =

∫
δA
δf
δfdΩ =

∫
δA
δf

∂f

∂t
δtdΩ (305)

For biaxial molecules, undergoing an impulsive elastic deformation,

∂f

∂t
= −∇ · (vf)− L∗ · (gf) (306)

From eqs.(304,305,306),

∫
δAdx = −

∫ ∫ δA
δf

[∇ · (vf) + L∗ · (gf)]δtdxdΩ

= −
∫ ∫

v · (−∇δA
δf

)fδtdxdΩ +
∫ ∫

L δA
δf
· g∗fδtdxdΩ.

(307)

Comparing the terms containing ∇v in eqs.(304,307):

τe : ∇v =

∫
L
δA
δf
· g∗fdΩ. (308)

Using the notation for the chemical potential, we arrive at

∫
L
δA
δf
· g∗fdΩ = ν

∫
Ω

(Lµ̃tf) · g∗dΩ

= νkBT 〈Lµ · g∗〉

(309)

where µ̃t = kBTµ. Using the equation for the flow vector −→g = K : αmm + K :

αnn +K : αkk (Eq. 251), we arrive at the expression for the elastic stress tensor

ταβe = νkBT 〈α∗αβm Lmµ+ α∗αβn Lnµ+ α∗αβk Lkµ〉

= −νkBT 〈L∗ · ~ααβ〉+ 〈α∗αβm LmU + α∗αβn LnU + α∗αβk LkU〉,

(310)
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where ~ααβ = (ααβm , ααβn , ααβk ) is a third order tensor and L∗ · ~ααβ =
∑3

i=1 Liα
αβ
i . The

elastic force is identified as Fe = −〈∇µ̃t〉. For an incompressible, homogeneous fluid

system, this term can be absorbed into the pressure and is therefore ignored from

now on.

C.3. Elastic Stress: Series Expansion

First we note the following useful identities necessary for the series expansion of the

elastic stress:

m1n1 = 1
4
[D2
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21 −D2
2−1 +D2

−21 +
√
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√
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√
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01 +D1
0−1)

(311)

The different components of the elastic stress are derived next. First, we present a

detailed expression for the normal stress components τ iie :
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τ 11
e = 〈(Lmg11

m + Lng
11
n + Lkg

11
k )(1 + U)〉

= 〈{ηbc[D2
22 +D2

−2−2 +D2
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√

2
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2
−22 +D2

2−2−
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(312)

where ηbc = 1
2i

(
r2b−r

2
c

r2b+r2c
), ηb = 1

4i
(

1−r2b
1+r2b

) and ηc = 1
4i

(1−r2c
1+r2c

). U is the excluded volume

potential given by Eq.(130). The constants rL in the following expressions are given

by rL = 8π2/(2L+ 1)2
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(C220(t)−C2−20(t))+r4(C444(t)−C4−4−4(t)+

C44−4(t)− C4−44(t) + 2√
70

(C440(t)− C4−40(t))− 1√
7
(C42−4(t)− C4−2−4(t)+

C424(t)−C4−24(t)−1
7

√
2
5
(C420(t)−C4−20(t)))]+2A1(t)ηc[

r0
5
C000(t)+2r2

7
C200(t)+

18r4
35
C400(t)] + 2A2(t)ηc[−2r2

7
(C220(t) + C2−20(t)) + r4

3
(C420(t) + C4−20(t))]+

2A3(t)ηc[−2r2
7

(C202(t) + C20−2(t)) + r4
3

(C402(t) + C40−2(t))] + 2A4(t)ηc[
2r2
7

(C22−2(t) + C2−22(t) + C222(t) + C2−2−2(t)) + r3
2

(C322(t) + C3−2−2(t)−

C32−2(t)− C3−22(t)) + 3r4
14

(C422(t) + C4−2−2(t) + C42−2(t) + C4−22(t))]+

2A12(t)ηc[−2r2
7

(C220(t)− C2−20(t)) + r4
3

(C420(t)− C4−20(t))] + 2B12(t)ηc[
2r2
7

(C22−2(t)−C2−22(t)+C222(t)−C2−2−2(t))+ r3
2

(C322(t)−C3−2−2(t)−C32−2(t)+

C3−22(t))+3r4
14

(C422(t)−C4−2−2(t)+C42−2(t)−C4−22(t))+2A23(t)ηc[
2r2
7

(C210(t)

) +C2−10(t) + r4

√
3
14

(C410(t) +C4−10(t))] + 2A13(t)ηc[
2r2
7

(C210(t)−C2−10(t))

+r4

√
3
14

(C410(t)−C4−10(t))] + 2B13(t)ηc[
2r2
7

(C2−12(t)−C21−2(t) +C2−1−2(t)

−C212(t)) + r3√
10

(C3−12(t)−C31−2(t)−C3−1−2(t) +C312(t)) + 3r4
7
√

2
(C41−2(t)−

C4−12(t)−C4−1−2(t)+C412(t))]+ηcA1(t)[2r2
7

(C22−2(t)+C2−22(t)+C2−2−2(t)+

C222(t) +
√

2
3
(C20−2(t) + C202(t))] + r3

2
(C3−2−2(t) + C322(t)− C32−2(t)−
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C3−22(t)) + 3r4
14

(C42−2(t) +C4−22(t) +C4−2−2(t) +C422(t)− 14
9

√
2
3
(C40−2(t)+

C402(t)))] + ηcA2(t)[4r2
7

(C20−2(t) + C202(t)− 1√
6
(C22−2(t) + C2−2−2(t)+

C222(t) +C2−22(t)))− r3√
6
(C32−2(t)−C322(t) +C3−22(t)−C3−2−2(t)) + r4

7

√
3
5
(

C402(t) + C40−2(t)) + r4

√
3
14

(C442(t) + C4−42(t) + C44−2(t) + C4−4−2(t)+√
5
2
(C42−2(t) + C4−2−2(t) + C422(t) + C4−22(t)))] + ηcA12(t)[

√
2
3

2r2
7

(C2−22(t)

+C2−2−2(t)− C22−2(t)− C222(t)) + r3√
5
(C30−2(t)− C302(t) +

√
5
6
(C3−22(t)

−C3−2−2(t) + C322(t)− C32−2(t))) + r4

√
3
14

(C44−2(t) + C442(t)− C4−4−2(t)

−C4−42(t)+ 1√
7
(C4−22(t)+C4−2−2(t)−C42−2(t)−C422(t)))]+ηcA3(t)[−

√
2
3

2r0
5

C000(t) + 4r2
7

(C2−20(t) + C220(t) +
√

2
3
C200(t)) + r4

√
3
14

(C42−4(t) + C424(t)

+C4−2−4(t)+C4−24(t)+
√

2
35

(C420(t)+C4−20(t))−0.8 1√
7
C400(t)−

√
8
5
(C40−4(t)

+C404(t)))] + ηcA23(t)[r2

√
6

7
(C212(t) + C21−2(t) + C2−12(t) + C2−1−2(t) + 2

3

(C212(t) + C2−12(t) + C21−2(t) + C2−1−2(t))) + r3
2

√
3
5
(C3−1−2(t)− C3−12(t)+

C312(t)− C31−2(t) +
√

5
3
(C332(t)− C33−2(t) + C3−3−2(t)− C3−32(t)) + 2

3
(

C3−1−2(t)− C3−12(t) + C312(t)− C31−2(t))) + r4

√
3

14
(C41−2(t) + C412(t)

+C4−1−2(t) +C4−12(t) +
√

7(C432(t) +C43−2(t) +C4−32(t) +C4−3−2(t))− 2(

C412(t)+C41−2(t)+C4−12(t)+C4−1−2(t)))]+ηcA13(t)[r2

√
6

7
(C2−12(t)−C21−2(t)−

C2−1−2(t) + 2
3
(C212(t)−C2−12(t) +C21−2(t)−C2−1−2(t))) + r3

2

√
3
5
(C3−1−2(t)

−C3−12(t)−C312(t)+C31−2(t)+
√

5
3
(C332(t)−C33−2(t)−C3−3−2(t)+2

3
(C312(t)−

C3−32(t))− C31−2(t)− C3−1−2(t) + C3−12(t)))− r4

√
3

14
(−C41−2(t)− C412(t)+

C4−1−2(t)+C4−12(t)+
√

7(C432(t)+C43−2(t)−C4−32(t)−C4−3−2(t))−2(C412(t)

+C41−2(t)−C4−12(t)−C4−1−2(t)))] + ηcB13(t)[2r2

√
6

7
(C2−10(t)−C210(t) + 2

3
(

C210(t)− C2−10(t))] + r4√
35

(C430(t)− C4−30(t) +
√

5/2(C4−1−4(t)− C414(t)−

C41−4(t) + C4−14(t)) +
√

35
2

(C43−4(t)− C4−34(t)− C4−3−4(t) + C434(t)))]+

ηcA4(t)[4r0
5
C000(t) + 8r0

7
(C200(t)− 1√

6
(C220(t) + C2−20(t))) + 2r4

35
(C400(t)+√

35
2

(C40−4(t) + C4−40(t) + C404(t) + C440(t)) + 35
2

(C4−4−4(t) + C44−4(t)+

C4−44(t) + C444(t))−
√

5
2
(C420(t) + C4−20(t)))] + ηcB12(t)[4r2

7
(C220(t)−

C2−20(t))+r4(C444(t)−C4−4−4(t)+C44−4(t)−C4−44(t)+ 2√
70

(C440(t)−)C4−40(t)
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)− 1√
7
(C42−4(t)− C4−2−4(t) + C424(t)− C4−24(t)− 1

7

√
2
5
(C420(t)−

C4−20(t)))] + ηbA1(t)[2r2
7

(C2−22(t) + C2−2−2(t) + C222(t) +
√

2
3
(C20−2(t)+

C202(t))) + r3
2

(C3−2−2(t) + C322(t)− C32−2(t)− C3−22(t)) + 3r4
14

(C42−2(t)+

C4−22(t) + C4−2−2(t) + C422(t)− 14
9

√
2
3
(C40−2(t) + C402(t)))] + ηbA2(t)[4r2

7

(C20−2(t) + C202(t)− 1√
6
(C22−2(t) + C2−2−2(t) + C222(t) + C2−22(t)))− r3√

6

(C32−2(t)− C322(t) + C3−22(t)− C3−2−2(t)) + r4
7

√
3
5
(C402(t) + C40−2(t))+

r4

√
3
14

(C442(t)+C4−42(t)+C44−2(t)+C4−4−2(t)+
√

2.5(C42−2(t)+C4−2−2(t)+

C422(t) + C4−22(t)))] + ηbA12(t)[
√

2
3

2r2
7

(C2−22(t) + C2−2−2(t)− C22−2(t)−

C222(t))+ r3√
5
(C30−2(t)−C302(t)+

√
5
6
(C3−22(t)−C3−2−2(t)+C322(t)−C32−2(t)

))+r4

√
3
14

(C44−2(t)+C442(t)−C4−4−2(t)−C4−42(t)+ 1√
7
(C4−22(t)+C4−2−2(t)−

C42−2(t)− C422(t)))] + ηbA3(t)[−
√

2
3

2r0
5
C000(t) + 4r2

7
(C2−20(t) + C220(t)+√

2
3
C200(t))+r4

√
3
14

(C42−4(t)+C424(t)+C4−2−4(t)+C4−24(t)+
√

2
35

(C420(t)+

C4−20(t))− 0.8 1√
7
C400(t)−

√
8
5
(C40−4(t) +C404(t)))] + ηbA23(t)[r2

√
6

7
(C212(t)

+C21−2(t)+C2−12(t)+C2−1−2(t)+ 2
3
(C212(t)+C2−12(t)+C21−2(t)+C2−1−2(t)

))+ r3
2

√
3
5
(C3−1−2(t)−C3−12(t)+C312(t)−C31−2(t)+

√
5
3
(C332(t)−C33−2(t)+

C3−3−2(t)− C3−32(t)) + 2
3
(C3−1−2(t)− C3−12(t) + C312(t)− C31−2(t)))+

r4

√
3

14
(C41−2(t) + C412(t) + C4−1−2(t) + C4−12(t) +

√
7(C432(t) + C43−2(t)+

C4−32(t) + C4−3−2(t))− 2(C412(t) + C41−2(t) + C4−12(t) + C4−1−2(t)))]+

ηbA13(t)[r2

√
6

7
(C2−12(t)−C21−2(t)−C212(t)+C2−1−2(t)+ 2

3
(C212(t)−C2−12(t)+

C21−2(t)− C2−1−2(t))) + r3
2

√
3
5
(C3−1−2(t)− C3−12(t)− C312(t) + C31−2(t)+√

5
3
(C332(t)− C33−2(t)− C3−3−2(t) + 2

3
(C312(t)− C3−32(t))− C31−2(t)−

C3−1−2(t) + C3−12(t)))− r4

√
3

14
(−C41−2(t)− C412(t) + C4−1−2(t) + C4−12(t)

+
√

7(C432(t) + C43−2(t)− C4−32(t)− C4−3−2(t))− 2(C412(t) + C41−2(t)−

C4−12(t)− C4−1−2(t)))] + ηbB13(t)[2r2

√
6

7
(C2−10(t)− C210(t) + 2

3
(C210(t)

−C2−10(t)))+ r4√
35

(C430(t)−C4−30(t)+
√

5/2(C4−1−4(t)−C414(t)−C41−4(t)+

C4−14(t))+
√

35
2

(C43−4(t)−C4−34(t)−C4−3−4(t)+C434(t)))]+ηbA4(t)[4r0
5
C000(t)

+8r0
7

(C200(t)− 1√
6
(C220(t)+C2−20(t)))+ 2r4

35
(C400(t)+

√
35
2

(C40−4(t)+C4−40(t)
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+C404(t) + C440(t)) + 35
2

(C4−4−4(t) + C44−4(t) + C4−44(t) + C444(t))−
√

5
2
(

C420(t)+C4−20(t)))]+ηbB12(t)[4r2
7

(C220(t)−C2−20(t))+r4(C444(t)−C4−4−4(t)+

)C44−4(t)− C4−44(t) + 2√
70

(C440(t)− C4−40(t))− 1√
7
(C42−4(t)− C4−2−4(t)+

C424(t)− C4−24(t)− 1
7

√
2
5
(C420(t)− C4−20(t)))]

τ 22
e = 〈(Lmg22

m + Lng
22
n + Lkg

22
k )(1 + U)〉

= 〈{−ηbc[D2
22 +D2

−2−2 +D2
−22 +D2

2−2 +
√

2
3
(D2

02 +D2
0−2)] + ηc[D

2
22 +D2

−2−2−

D2
2−2 −D2

−22 + 2D2
00 +

√
2
3
(D2

02 +D2
0−2)] + ηb[D

2
22 −D2

−2−2 +D2
−22 −D2

2−2+√
2
3
(D2

02 −D2
0−2)]}{1 + U}〉

(313)

= −ηbcr2(C2−2−2(t) +C222(t) +C22−2(t) +C2−22(t) +
√

2
3
(C202(t) +C20−2(t)))+

ηcr2(C222(t) + C2−2−2(t)− C22−2(t)− C2−22(t) + 2C200(t) +
√

2
3
(C202(t)+

C20−2(t))) + ηbr2(C2−2−2(t)−C222(t) +C22−2(t)−C2−22(t) +
√

2
3
(C20−2(t)−

C202(t)))+ηbcA1(t)[2r2
7

(C22−2(t)+C2−22(t)+C2−2−2(t)+C222(t)+
√

2
3
(C20−2(t)+

C202(t))) + r3
2

(C3−2−2(t) + C322(t)− C32−2(t)− C3−22(t)) + 3r4
14

(C42−2(t)+

C4−22(t) + C4−2−2(t) + C422(t)− 14
9

√
2
3
(C40−2(t) + C402(t)))] + ηbcA2(t)[4r2

7

(C20−2(t) + C202(t)− 1√
6
(C22−2(t) + C2−2−2(t) + C222(t) + C2−22(t)))− r3√

6

(C32−2(t)−C322(t)+C3−22(t)−C3−2−2(t))+ r4
7

√
3
5
(C402(t)+C40−2(t))+r4

√
3
14

(C442(t) + C4−42(t) + C44−2(t) + C4−4−2(t) +
√

2.5(C42−2(t) + C4−2−2(t)+

C422(t) + C4−22(t)))] + ηbcA12(t)[
√

2
3

2r2
7

(C2−22(t) + C2−2−2(t)− C22−2(t)−

C222(t)) + r3√
5
(C30−2(t)− C302(t) +

√
5
6
(C3−22(t)− C3−2−2(t) + C322(t)

−C32−2(t)))+r4

√
3
14

(C44−2(t)+C442(t)−C4−4−2(t)−C4−42(t)+ 1√
7
(C4−22(t)+

C4−2−2(t)−C42−2(t)−C422(t)))] + ηbcA3(t)[−
√

2
3

2r0
5
C000(t) + 4r2

7
(C2−20(t)+

C220(t) +
√

2
3
C200(t)) + r4

√
3
14

(C42−4(t) + C424(t) + C4−2−4(t) + C4−24(t)+√
2
35

(C420(t)+C4−20(t))−0.8 1√
7
C400(t)−

√
8
5
(C40−4(t)+C404(t)))]+ηbcA23(t)[r2

√
6

7
(C212(t)+C21−2(t)+C2−12(t)+C2−1−2(t)+ 2

3
(C212(t)+C2−12(t)+C21−2(t)+

C2−1−2(t))) + r3
2

√
3
5
(C3−1−2(t)−C3−12(t) +C312(t)−C31−2(t) +

√
5
3
(C332(t)
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−C33−2(t) + C3−3−2(t)− C3−32(t)) + 2
3
(C3−1−2(t)− C3−12(t) + C312(t)−

C31−2(t))) + r4

√
3

14
(C41−2(t) + C412(t) + C4−1−2(t) + C4−12(t) +

√
7(C432(t)

+C43−2(t)+C4−32(t)+C4−3−2(t))−2(C412(t)+C41−2(t)+C4−12(t)+C4−1−2(t)

))] + ηbcA13(t)[r2

√
6

7
(C2−12(t)− C21−2(t)− C212(t) + C2−1−2(t) + 2

3
(C212(t)

−C2−12(t) +C21−2(t)−C2−1−2(t))) + r3
2

√
3
5
(C3−1−2(t)−C3−12(t)−C312(t)+

C31−2(t) +
√

5
3
(C332(t)− C33−2(t)− C3−3−2(t) + 2

3
(C312(t)− C3−32(t))

−C31−2(t)−C3−1−2(t)+C3−12(t)))− r4

√
3

14
(−C41−2(t)−C412(t)+C4−1−2(t)+

C4−12(t)+
√

7(C432(t)+C43−2(t)−C4−32(t)−C4−3−2(t))−2(C412(t)+C41−2(t)

−C4−12(t)− C4−1−2(t)))] + ηbcB13(t)[2r2

√
6

7
(C2−10(t)− C210(t) + 2

3
(C210(t)−

C2−10(t))) + r4√
35

(C430(t)−C4−30(t) +
√

5/2(C4−1−4(t)−C414(t)−C41−4(t)+

C4−14(t))+
√

35
2

(C43−4(t)−C4−34(t)−C4−3−4(t)+C434(t)))]+ηbcA4(t)[4r0
5
C000(t)

+8r0
7

(C200(t)− 1√
6
(C220(t)+C2−20(t)))+2r4

35
(C400(t)+

√
35
2

(C40−4(t)+C4−40(t)+

C404(t) + C440(t)) + 35
2

(C4−4−4(t) + C44−4(t) + C4−44(t) + C444(t))−
√

5
2
(

C420(t)+C4−20(t)))]+ηbcB12(t)[4r2
7

(C220(t)−C2−20(t))+r4(C444(t)−C4−4−4(t)+

C44−4(t)− C4−44(t) + 2√
70

(C440(t)− C4−40(t))− 1√
7
(C42−4(t)− C4−2−4(t)+

C424(t)− C4−24(t)− 1
7

√
2
5
(C420(t)− C4−20(t)))] + 2A1(t)ηc[

r0
5
C000(t) + 2r2

7

C200(t) + 18r4
35
C400(t)] + 2A2(t)ηc[−2r2

7
(C220(t) + C2−20(t)) + r4

3
(C420(t)

+C4−20(t))] + 2A3(t)ηc[−2r2
7

(C202(t) + C20−2(t)) + r4
3

(C402(t) + C40−2(t))]

+2A4(t)[2r2
7

(C22−2(t)+C2−22(t)+C222(t)+C2−2−2(t))+ r3
2

(C322(t)+C3−2−2(t)−

C32−2(t)− C3−22(t)) + 3r4
14

(C422(t) + C4−2−2(t) + C42−2(t) + C4−22(t))]+

2A12(t)ηc[−2r2
7

(C220(t)−C2−20(t)) + r4
3

(C420(t)−C4−20(t))] + 2B12(t)ηc[
2r2
7

(

C22−2(t)−C2−22(t)+C222(t)−C2−2−2(t))+ r3
2

(C322(t)−C3−2−2(t)−C32−2(t)+

C3−22(t))+3r4
14

(C422(t)−C4−2−2(t)+C42−2(t)−C4−22(t))+2A23(t)[2r2
7

(C210(t)+

C2−10(t)) + r4

√
3
14

(C410(t) +C4−10(t))] + 2A13(t)ηc[
2r2
7

(C210(t)−C2−10(t))+

r4

√
3
14

(C410(t)−C4−10(t))] + 2B13(t)ηc[
2r2
7

(C2−12(t)−C21−2(t) +C2−1−2(t)−

C212(t)) + r3√
10

(C3−12(t)− C31−2(t)− C3−1−2(t) + C312(t)) + 3r4
7
√

2
(C41−2(t)−

C4−12(t)−C4−1−2(t) +C412(t))]ηcA1(t)[2r2
7

(C22−2(t) +C2−22(t) +C2−2−2(t)+
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C222(t) +
√

2
3
(C20−2(t) + C202(t))) + r3

2
(C3−2−2(t) + C322(t)− C32−2(t)−

C3−22(t)) + 3r4
14

(C42−2(t) +C4−22(t) +C4−2−2(t) +C422(t)− 14
9

√
2
3
(C40−2(t)+

C402(t)))] + ηcA2(t)[4r2
7

(C20−2(t) + C202(t)− 1√
6
(C22−2(t) + C2−2−2(t)+

C222(t) + C2−22(t)))− r3√
6
(C32−2(t)− C322(t) + C3−22(t)− C3−2−2(t))

+ r4
7

√
3
5
(C402(t)+C40−2(t))+r4

√
3
14

(C442(t)+C4−42(t)+C44−2(t)+C4−4−2(t)

+
√

2.5(C42−2(t)+C4−2−2(t)+C422(t)+C4−22(t)))]+ηcA12(t)[
√

2
3

2r2
7

(C2−22(t)

+C2−2−2(t)− C22−2(t)− C222(t)) + r3√
5
(C30−2(t)− C302(t) +

√
5
6
(C3−22(t)−

C3−2−2(t) + C322(t)− C32−2(t))) + r4

√
3
14

(C44−2(t) + C442(t)− C4−4−2(t)−

C4−42(t) + 1√
7
(C4−22(t) +C4−2−2(t)−C42−2(t)−C422(t)))] +ηcA3(t)[−

√
2
3

2r0
5

C000(t) + 4r2
7

(C2−20(t) + C220(t) +
√

2
3
C200(t)) + r4

√
3
14

(C42−4(t) + C424(t)+

C4−2−4(t)+C4−24(t)+
√

2
35

(C420(t)+C4−20(t))−0.8 1√
7
C400(t)−

√
8
5
(C40−4(t)+

C404(t)))]+ηcA23(t)[r2

√
6

7
(C212(t)+C21−2(t)+C2−12(t)+C2−1−2(t)+2

3
(C212(t)+

C2−12(t) + C21−2(t) + C2−1−2(t))) + r3
2

√
3
5
(C3−1−2(t)− C3−12(t) + C312(t)−

C31−2(t) +
√

5
3
(C332(t)− C33−2(t) + C3−3−2(t)− C3−32(t)) + 2

3
(C3−1−2(t)−

C3−12(t)+C312(t)−C31−2(t)))+r4

√
3

14
(C41−2(t)+C412(t)+C4−1−2(t)+C4−12(t)

+
√

7(C432(t) + C43−2(t) + C4−32(t) + C4−3−2(t))− 2(C412(t) + C41−2(t)+

C4−12(t)+C4−1−2(t)))]+ηcA13(t)[r2

√
6

7
(C2−12(t)−C21−2(t)−C212(t)+C2−1−2(t)

+2
3
(C212(t)−C2−12(t) +C21−2(t)−C2−1−2(t))) + r3

2

√
3
5
(C3−1−2(t)−C3−12(t)

−C312(t)+C31−2(t)+
√

5
3
(C332(t)−C33−2(t)−C3−3−2(t)+2

3
(C312(t)−C3−32(t))−

C31−2(t)− C3−1−2(t) + C3−12(t)))− r4

√
3

14
(−C41−2(t)− C412(t) + C4−1−2(t)+

C4−12(t)+
√

7(C432(t)+C43−2(t)−C4−32(t)−C4−3−2(t))−2(C412(t)+C41−2(t)

−C4−12(t)− C4−1−2(t)))] + ηcB13(t)[2r2

√
6

7
(C2−10(t)− C210(t) + 2

3
(C210(t)−

C2−10(t))] + r4√
35

(C430(t)− C4−30(t) +
√

5/2(C4−1−4(t)− C414(t)− C41−4(t)

+C4−14(t))+
√

35
2

(C43−4(t)−C4−34(t)−C4−3−4(t)+C434(t)))]+A4(t)[4r0
5
C000(t)

+8r0
7

(C200(t)− 1√
6
(C220(t)+C2−20(t)))+2r4

35
(C400(t)+

√
35
2

(C40−4(t)+C4−40(t)+

C404(t) + C440(t)) + 35
2

(C4−4−4(t) + C44−4(t) + C4−44(t) + C444(t))−
√

5
2
(

C420(t)+C4−20(t)))]+ηcB12(t)[4r2
7

(C220(t)−C2−20(t))+r4(C444(t)−C4−4−4(t)
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+C44−4(t)−C4−44(t) + 2√
70

(C440(t)−C4−40(t))− 1√
7
(C42−4(t)−C4−2−4(t)+

C424(t)−C4−24(t)−1
7

√
2
5
(C420(t)−C4−20(t)))]+ηbA1(t)[2r2

7
(C22−2(t)+C2−22(t)+

C2−2−2(t) + C222(t) +
√

2
3
(C20−2(t) + C202(t))) + r3

2
(C3−2−2(t) + C322(t)−

C32−2(t)−C3−22(t)) + 3r4
14

(C42−2(t) +C4−22(t) +C4−2−2(t) +C422(t)− 14
9

√
2
3
(

C40−2(t) + C402(t)))] + ηbA2(t)[4r2
7

(C20−2(t) + C202(t)− 1√
6
(C22−2(t)

+C2−2−2(t) + C222(t) + C2−22(t)))− r3√
6
(C32−2(t)− C322(t) + C3−22(t)

−C3−2−2(t))+ r4
7

√
3
5
(C402(t)+C40−2(t))+r4

√
3
14

(C442(t)+C4−42(t)+C44−2(t)

+C4−4−2(t)+
√

2.5(C42−2(t)+C4−2−2(t)+C422(t)+C4−22(t)))]+ηbA12(t)[
√

2
3

2r2
7

(C2−22(t)+C2−2−2(t)−C22−2(t)−C222(t))+(C30−2(t)−C302(t)+
√

5
6
(C3−22(t)−

C3−2−2(t) + C322(t)− C32−2(t))) + r4

√
3
14

(C44−2(t) + C442(t)− C4−4−2(t)−

C4−42(t) + 1√
7
(C4−22(t) +C4−2−2(t)−C42−2(t)−C422(t)))] +ηbA3(t)[−

√
2
3

2r0
5

C000(t) + 4r2
7

(C2−20(t) + C220(t) +
√

2
3
C200(t)) + r4

√
3
14

(C42−4(t) + C424(t)

+C4−2−4(t)+C4−24(t)+
√

2
35

(C420(t)+C4−20(t))−0.8 1√
7
C400(t)−

√
8
5
(C40−4(t)+

C404(t)))]+ηbA23(t)[r2

√
6

7
(C212(t)+C21−2(t)+C2−12(t)+C2−1−2(t)+ 2

3
(C212(t)

+C2−12(t) +C21−2(t) +C2−1−2(t))) + r3
2

√
3
5
(C3−1−2(t)−C3−12(t) +C312(t)−

C31−2(t) +
√

5
3
(C332(t)− C33−2(t) + C3−3−2(t)− C3−32(t)) + 2

3
(C3−1−2(t)−

C3−12(t)+C312(t)−C31−2(t)))+r4

√
3

14
(C41−2(t)+C412(t)+C4−1−2(t)+C4−12(t)

+
√

7(C432(t) + C43−2(t) + C4−32(t) + C4−3−2(t))− 2(C412(t) + C41−2(t)

+C4−12(t) + C4−1−2(t)))] + ηbA13(t)[r2

√
6

7
(C2−12(t)− C21−2(t)− C212(t)

+C2−1−2(t)+ 2
3
(C212(t)−C2−12(t)+C21−2(t)−C2−1−2(t)))+ r3

2

√
3
5
(C3−1−2(t)

−C3−12(t)− C312(t) + C31−2(t) +
√

5
3
(C332(t)− C33−2(t)− C3−3−2(t) + 2

3
(

C312(t)− C3−32(t))− C31−2(t)− C3−1−2(t) + C3−12(t)))− r4

√
3

14
(C41−2(t)−

C412(t)+C4−1−2(t)+C4−12(t)+
√

7(C432(t)+C43−2(t)−C4−32(t)−C4−3−2(t))

−2(C412(t) +C41−2(t)−C4−12(t)−C4−1−2(t)))] + ηbB13(t)[2r2

√
6

7
(C2−10(t)−

C210(t)+ 2
3
(C210(t)−C2−10(t)))+ r4√

35
(C430(t)−C4−30(t)+

√
5/2(C4−1−4(t)−

C414(t)−C41−4(t)+C4−14(t))+
√

35
2

(C43−4(t)−C4−34(t)−C4−3−4(t)+C434(t)

))] + ηbA4(t)[4r0
5
C000(t) + 8r0

7
(C200(t)− 1√

6
(C220(t) +C2−20(t))) + 2r4

35
(C400(t)
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+
√

35
2

(C40−4(t) + C4−40(t) + C404(t) + C440(t)) + 35
2

(C4−4−4(t) + C44−4(t)+

C4−44(t) + C444(t))−
√

5
2
(C420(t) + C4−20(t)))] + ηbB12(t)[4r2

7
(C220(t)−

C2−20(t)) + r4(C444(t)− C4−4−4(t) + C44−4(t)− C4−44(t) + 2√
70

(C440(t)−

C4−40(t))− 1√
7
(C42−4(t)− C4−2−4(t) + C424(t)− C4−24(t)− 1

7

√
2
5
(C420(t)−

C4−20(t)))]

τ 33
e = 〈(Lmg33

m + Lng
33
n + Lkg

33
k )(1 + U)〉

= 〈{−2(ηbc + ηc)
√

2
3
(D2

02 +D2
0−2)− 2ηb

√
2
3
(D2

02 −D2
0−2)}{1 + U}〉

(314)

= −2(ηbc + ηc)r2

√
2
3
(C202(t) + C20−2(t))− 2ηbr2

√
2
3
(C20−2(t)− C202(t))

−2
√

2
3
(ηbc + ηc){A1(t)[−2r2

7
(C202(t) + C20−2(t)) + r4

3
(C402(t) + C40−2(t))]+

A2(t)[2r2
7

(C222(t) +C2−22(t) +C22−2(t) +C2−2−2(t)) + r3
2

(C3−22(t)−C322(t)+

C32−2(t)− C3−2−2(t)) + 3r4
14

(C4−22(t) + C422(t) + C42−2(t) + C4−2−2(t))]+

A3(t)[2r0
5
C000(t)− 4r2

7
C200(t)+ 6r4

35
(C400(t)+

√
35
2

(C404(t)+C40−4(t)))]+A4(t)[

4r2
7

(C220(t) +C2−20(t)) + r4

√
3
14

(C42−4(t) +C4−24(t) +C424(t) +C4−2−4(t)+

2√
70

(C420(t)+C4−20(t)))]+A12(t)[2r2
7

(C222(t)−C2−22(t)+C22−2(t)−C2−2−2(t))+

r3
2

(C32−2(t)+C3−2−2(t)−C3−22(t)−C322(t))+ 3r4
14

(C42−2(t)+C422(t)−C42−2(t)

−C4−2−2(t))] +A13(t)[2r2
7

(C2−1−2(t) + C2−12(t)− C212(t)− C21−2(t)) + r3√
10

(

C31−2(t)−C312(t)+C3−12(t)−C3−1−2(t))+ 3r4
7
√

2
(C41−2(t)+C412(t)−C4−1−2(t)

−C4−12(t))] +A23(t)[−2r2
7

(C212(t) +C2−12(t) +C21−2(t) +C2−1−2(t)) + r3√
10

(

C31−2(t)+C3−12(t)−C312(t)−C3−1−2(t))+ 3r4
7
√

2
(C412(t)+C4−12(t)+C41−2(t)+

C4−1−2(t))] +B12(t)[4r2
7

(C220(t)−C2−20(t)) + r4

√
3
14

(C42−4(t)−C4−2−4(t)+

C424(t)−C4−24(t)+ 2√
70

(C420(t)−C4−20(t)))]+B13(t)[4r2
7

(C2−10(t)−C210(t))

+2r4
7

√
3
10

(C410(t)−C4−10(t))]}−2
√

2
3
ηb{A1(t)[−2r2

7
(C202(t)+C20−2(t))+ r4

3
(

C402(t)+C40−2(t))]+A2(t)[2r2
7

(C222(t)+C2−22(t)+C22−2(t)+C2−2−2(t))+ r3
2

(

C3−22(t)−C322(t)+C32−2(t)−C3−2−2(t))+ 3r4
14

(C4−22(t)+C422(t)+C42−2(t)+

C4−2−2(t))] + A3(t)[2r0
5
C000(t)− 4r2

7
C200(t) + 6r4

35
(C400(t) +

√
35
2

(C404(t)
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+C40−4(t)))] + A4(t)[4r2
7

(C220(t) + C2−20(t)) + r4

√
3
14

(C42−4(t) + C4−24(t)+

C424(t)+C4−2−4(t)+ 2√
70

(C420(t)+C4−20(t)))]+A12(t)[2r2
7

(C222(t)−C2−22(t)+

C22−2(t)−C2−2−2(t))+ r3
2

(C32−2(t)+C3−2−2(t)−C3−22(t)−C322(t))+(C42−2(t)+

C422(t)−C42−2(t)−C4−2−2(t))] +A13(t)[2r2
7

(C2−1−2(t) +C2−12(t)−C212(t)−

C21−2(t)) + r3√
10

(C31−2(t)−C312(t) +C3−12(t)−C3−1−2(t)) + 3r4
7
√

2
(C41−2(t)+

C412(t)−C4−1−2(t)−C4−12(t))]+A23(t)[−2r2
7

(C212(t)+C2−12(t)+C21−2(t)+

C2−1−2(t)) + r3√
10

(C31−2(t) +C3−12(t)−C312(t)−C3−1−2(t)) + 3r4
7
√

2
(C412(t)+

C4−12(t) + C41−2(t) + C4−1−2(t))] +B12(t)[4r2
7

(C220(t)− C2−20(t)) + r4

√
3
14

(

C42−4(t)−C4−2−4(t)+C424(t)−C4−24(t)+ 2√
70

(C420(t)−C4−20(t)))]+B13(t)[4r2
7

(

C2−10(t)− C210(t)) + 2r4
7

√
3
10

(C410(t)− C4−10(t))]}

The elastic shear stress τ 12
e is given by:

τ 12
e = 〈(Lmg12

m + Lng
12
n + Lkg

12
k )(1 + U)〉

= 〈{−iηbc(D2
−22 −D2

2−2 −D2
22 +D2

−2−2)− iηc(D2
−2−2 +D2

2−2 −D2
22 −D2

−22)

−ηb(D2
−2−2 +D2

22 −D2
2−2 −D2

−22) + 1
2
D1

00}{1 + U}〉
(315)

= −iηbcr2(C22−2(t)−C2−22(t)−C2−2−2(t)+C222(t))−iηcr2(C222(t)+C2−22(t)−

C2−2−2(t)− C22−2(t))− ηbr2(C222(t)− C2−2−2(t)− C2−22(t) + C22−2(t))+

r1
2
C100(t)− iηbc{A1(t)[2r2

7
(C22−2(t)− C2−22(t)− C2−2−2(t) + C222(t))+

r3
2

(C3−22(t)− C32−2(t)− C3−2−2(t) + C322(t)) + 3r4
14

(C42−2(t)− C422(t)−

C4−2−2(t) + C422(t))] + A2(t)[ r3√
5
(C302(t)− C30−2(t)) + r4

√
3
14

(C442(t)+

C44−2(t)−C4−42(t)−C4−4−2(t))] +A12(t)[−4r2
7

(C202(t) +C20−2(t))− r4
7

√
3
5
(

C402(t) + C40−2(t)−
√

35
2

(C442(t) + C44−2(t) + C4−42(t) + C4−4−2(t)))]+

A3(t)[4r2
7

(C220(t)− C2−20(t)) + r4
7

√
3
5
(C420(t)− C4−20(t) +

√
35
2

(C42−4(t)

−C4−2−4(t)−C4−24(t)+C424(t)))]+A23(t)[r2

√
6

7
(C212(t)−C2−12(t)−C2−1−2(t)

+C21−2(t))+ r3
2

√
35(C312(t)−C31−2(t)+C3−12(t)−C3−1−2(t)+

√
5
3
(C3−32(t)

−C3−3−2(t)− C33−2(t) + C332(t))) + r4

√
3

14
(C412(t) + C41−2(t)− C4−12(t)
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−C4−1−2(t)+
√

7(C43−2(t)+C432(t)−C4−32(t)−C4−3−2(t)))]+A13(t)[−r2

√
6

7

(C212(t) + C2−12(t) + C2−1−2(t) + C21−2(t)) + r3
2

√
3
5
(C31−2(t)− C312(t)+

C3−12(t)− C3−1−2(t) +
√

5
3
(C3−3−2(t)− C3−32(t)− C33−2(t) + C332(t)))

−r4

√
3

14
(C412(t) + C41−2(t) + C4−12(t) + C4−1−2(t)−

√
7(C43−2(t) + C432(t)+

C4−32(t)+C4−3−2(t)))]+A4(t)[r4(C44−4(t)−C4−44(t)−C4−4−4(t)+C444(t)+

2√
70

(C440(t)− C4−40(t)))] +B12(t)[−4r0
5
C000(t)− 8r2

7
C200(t) + r4(

C44−4(t)+C4−44(t)+C4−4−4(t)+C444(t)+ 2√
70

(C440(t)−C40−4(t)−C404(t)+

C4−40(t))− 2
35
C400(t))] +B13(t)[−2r2

√
6

7
(C210(t) + C2−10(t))− r4

7
√

5
(C410(t)+

C4−10(t)−
√

7(C430(t) + C4−30(t))− 7
√

5
2
(C434(t) + C4−34(t) + C43−4(t)+

C4−3−4(t))+
√

35
2

(C414(t)+C4−14(t)+C41−4(t)+C4−1−4(t)))]}−iηc{A1(t)[2r2
7

(C22−2(t)− C2−22(t)− C2−2−2(t) + C222(t)) + r3
2

(C3−22(t)− C32−2(t)−

C3−2−2(t)+C322(t))+ 3r4
14

(C42−2(t)−C422(t)−C4−2−2(t)+C422(t))]+A2(t)[ r3√
5

(C302(t)− C30−2(t)) + r4

√
3
14

(C442(t) + C44−2(t)− C4−42(t)− C4−4−2(t))]+

A12(t)[−4r2
7

(C202(t) + C20−2(t))− r4
7

√
3
5
(C402(t) + C40−2(t)−

√
35
2

(C442(t)+

C44−2(t) + C4−42(t) + C4−4−2(t)))] + A3(t)[4r2
7

(C220(t)− C2−20(t)) + r4
7

√
3
5
(

C420(t)− C4−20(t) +
√

35
2

(C42−4(t)− C4−2−4(t)− C4−24(t) + C424(t)))]+

A23(t)[r2

√
6

7
(C212(t)− C2−12(t)− C2−1−2(t) + C21−2(t)) + r3

2

√
3
5
(C312(t)−

C31−2(t) + C3−12(t)− C3−1−2(t) +
√

5
3
(C3−32(t)− C3−3−2(t)− C33−2(t)+

C332(t))) + r4

√
3

14
(C412(t) + C41−2(t)− C4−12(t)− C4−1−2(t) +

√
7(C43−2(t)+

C432(t)− C4−32(t)− C4−3−2(t)))] + A13(t)[−r2

√
6

7
(C212(t) + C2−12(t)+

C2−1−2(t)+C21−2(t))+ r3
2

√
35(C31−2(t)−C312(t)+C3−12(t)−C3−1−2(t)+

√
5
3
(

C3−3−2(t)−C3−32(t)−C33−2(t)+C332(t)))−r4

√
3

14
(C412(t)+C41−2(t)+C4−12(t)+

C4−1−2(t)−
√

7(C43−2(t)+C432(t)+C4−32(t)+C4−3−2(t)))]+A4(t)[r4(C44−4(t)−

C4−44(t)−C4−4−4(t)+C444(t)+ 2√
70

(C440(t)−C4−40(t)))]+B12(t)[−4r0
5
C000(t)−

8r2
7
C200(t) + r4(C44−4(t) + C4−44(t) + C4−4−4(t) + C444(t) + 2√

70
(C440(t)−

C40−4(t)− C404(t) + C4−40(t))− 2
35
C400(t))] +B13(t)[−2r2

√
6

7
(C210(t)+

C2−10(t))− r4
7
√

5
(C410(t) +C4−10(t)−

√
7(C430(t) +C4−30(t))−7

√
5
2
(C434(t)+
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C4−34(t) + C43−4(t) + C4−3−4(t)) +
√

35
2

(C414(t) + C4−14(t) + C41−4(t)+

C4−1−4(t)))]}+−ηb{A1(t)[2r2
7

(C22−2(t)− C2−22(t)− C2−2−2(t) + C222(t))+

r3
2

(C3−22(t)− C32−2(t)− C3−2−2(t) + C322(t)) + 3r4
14

(C42−2(t)− C422(t)−

C4−2−2(t)+C422(t))]+A2(t)[ r3√
5
(C302(t)−C30−2(t))+r4

√
3
14

(C442(t)+C44−2(t)−

C4−42(t)− C4−4−2(t))] + A12(t)[−4r2
7

(C202(t) + C20−2(t))− r4
7

√
3
5
(C402(t)+

C40−2(t)−
√

35
2

(C442(t) + C44−2(t) + C4−42(t) + C4−4−2(t)))] + A3(t)[4r2
7

(C220(t)−C2−20(t)) + r4
7

√
3
5
(C420(t)−C4−20(t) +

√
35
2

(C42−4(t)−C4−2−4(t)

−C4−24(t)+C424(t)))]+A23(t)[r2

√
6

7
(C212(t)−C2−12(t)−C2−1−2(t)+C21−2(t))

+ r3
2

√
3
5
(C312(t)−C31−2(t)+C3−12(t)−C3−1−2(t)+

√
5
3
(C3−32(t)−C3−3−2(t)−

C33−2(t)+C332(t)))+(C412(t)+C41−2(t)−C4−12(t)−C4−1−2(t)+
√

7(C43−2(t)

+C432(t)− C4−32(t)− C4−3−2(t)))] + A13(t)[−r2

√
6

7
(C212(t) + C2−12(t)+

C2−1−2(t) + C21−2(t)) + r3
2

√
35(C31−2(t)− C312(t) + C3−12(t)− C3−1−2(t)+√

5
3
(C3−3−2(t)−C3−32(t)−C33−2(t) +C332(t)))− r4

√
3

14
(C412(t) +C41−2(t)+

C4−12(t) + C4−1−2(t)−
√

7(C43−2(t) + C432(t) + C4−32(t) + C4−3−2(t)))]+

A4(t)[r4(C44−4(t)−C4−44(t)−C4−4−4(t)+C444(t)+ 2√
70

(C440(t)−C4−40(t)))]+

B12(t)[−4r0
5
C000(t)− 8r2

7
C200(t)+r4(C44−4(t)+C4−44(t)+C4−4−4(t)+C444(t)+

2√
70

(C440(t)− C40−4(t)− C404(t) + C4−40(t))− 2
35
C400(t))] +B13(t)[−2r2

√
6

7
(C210(t) +C2−10(t))− r4

7
√

5
(C410(t) +C4−10(t)−

√
7(C430(t) +C4−30(t))− 7√

5
2
(C434(t) + C4−34(t) + C43−4(t) + C4−3−4(t)) +

√
35
2

(C414(t) + C4−14(t)+

C41−4(t) + C4−1−4(t)))]}+ A1(t)( r1
5
C100(t) + r3

10
C300(t)) + A2(t) r3

2
√

5
(C320(t)

+C3−20(t)) +A3(t) r3
2
√

5
(C302(t) +C30−2(t)) +A4(t)( r2

3
(C2−2−2(t)−C2−22(t)−

C22−2(t)+C222(t))+ r3
6

(C3−2−2(t)+C3−22(t)+C32−2(t)+C322(t)))+A12(t) r3
2
√

5
(

C320(t)−C3−20(t))+A13(t)( r1
√

3
10

(C110(t)−C1−10(t))+ r2
√

2
5

(C310(t)−C3−10(t)))+

A23(t)( r1
√

3
10

(C110(t) + C1−10(t)) + r2
√

2
5

(C310(t) + C3−10(t))) +B12(t)( r2
3

(

C222(t)−C2−2−2(t)+C2−22(t)−C22−2(t))+ r3
6

(C322(t)−C3−2−2(t)+C32−2(t)−

C3−22(t)))+B13(t)( r2
6

(C212(t)+C2−12(t)−C21−2(t)−C2−1−2(t))+ r3
3

√
2
5
(C312(t)

−C3−12(t) + C31−2(t)− C3−1−2(t)))
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